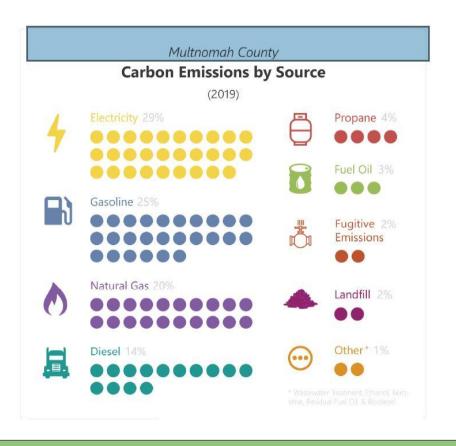
A Just Transition to a Clean Energy Future

Where we are and the path ahead

Silvia Tanner Tim Lynch

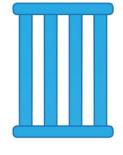

We are seeing the impacts

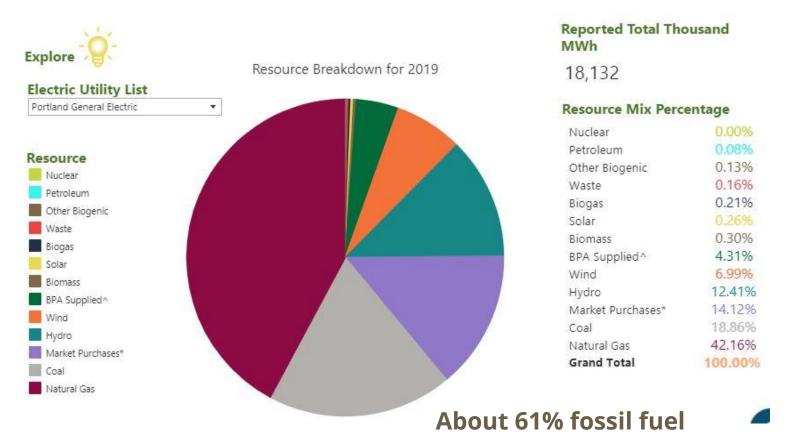

Latest IPCC report: On a path to likely exceed 1.5°C during 21st century (based on COP 26 2030 commitments)

At a local level: Emissions

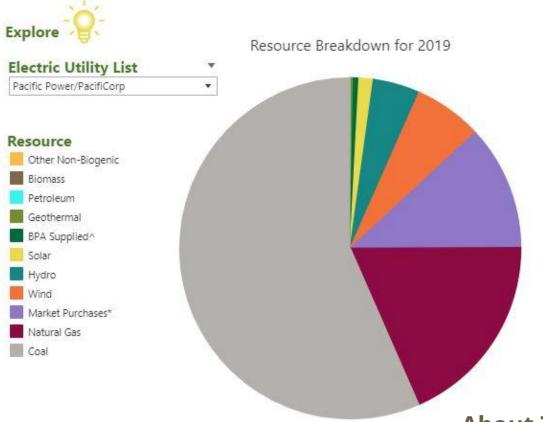
The Four Pillars

JUST TRANSITION


EFFICIENCY


UTILITY DECARBONIZATION

At a local level: Our energy utility service



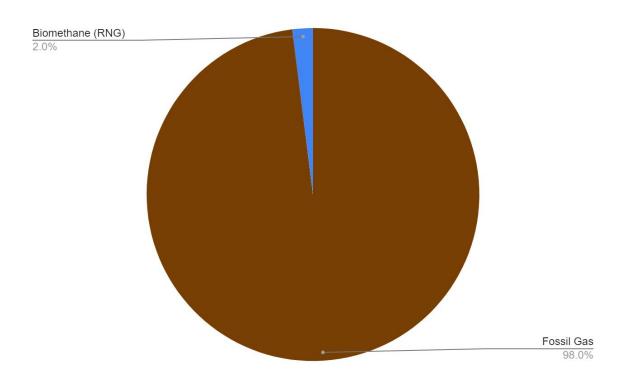
Check your utility's electricity mix here

PGE

Pacific Power

Reported Total Thousand MWh

14,344


Resource Mix Percentage

Other Non-Biogenic	0.00%
Biomass	0.04%
Petroleum	0.05%
Geothermal	0.22%
BPA Supplied^	0.51%
Solar	1.35%
Hydro	4.45%
Wind	6.49%
Market Purchases*	11.82%
Natural Gas	18.49%
Coal	56.57%
Grand Total	100.00%

About 75% fossil fuel

NW Natural

Multnomah County's clean energy goals

At a local level: Energy burden

MULTNOMAH COUNTY

November 1, 2020

COUNTY SEAT: PORTLAND

Area (square miles): 435

Population (2018): 790,670

Black, Indigenous, and People of Color Population Share: 30%

Households: 321,968

Regional Typical Annual Household Income: \$60,286

POVERTY & ENERGY BURDEN

Energy Burdened* Households: 24%

Federal Poverty Level (family of three): \$21,720

200% Federal Poverty Level: \$43,440

Annual Energy Burden Gap**: \$541

At a local level: Energy injustice

TABLE 3: ETHNIC AND RACIAL DEMOGRAPHIC INTERVIEWS

	All Solar
Latinx	4.8%
Asian	3.0%
Black or African American	2.1%
White	89.2%
Native Hawaiian or other Pacific Islander	0.3%
American Indian or Alaskan Native	0.6%
More than one race	0.0%

Disparities in rooftop photovoltaics deployment in the United States by race and ethnicity

Deborah A. Sunter 21,2,3,4*, Sergio Castellanos 23,4,5,6* and Daniel M. Kammen 23,4,7

The rooftop solar industry in the United States has experienced dramatic growth—roughly 50% per year since 2012, along with steadily falling prices. Although the opportunities this affords for clean, reliable power are transformative, the benefits might not accrue to all individuals and communities. Combining the location of existing and potential sites for rooftop photovoltaics (PV) from Google's Project Sunroof and demographic information from the American Community Survey, the relative adoption of rooftop PV is compared across census tracts grouped by racial and ethnic majority. Black- and Hispanic-majority census tracts show on average significantly less rooftop PV installed. This disparity is often attributed to racial and ethnic differences in household income and home ownership. In this study, significant racial disparity remains even after we account for these differences. For the same median household income, black- and Hispanic-majority census tracts have installed less rooftop PV compared with no majority tracts by 69 and 30%, respectively, while white-majority census tracts have installed 21% more. When correcting for home ownership, black- and Hispanic-majority census tracts have installed less rooftop PV compared with no majority tracts by 61 and 45%, respectively, while white-majority census tracts have installed 37% more. The social dispersion effect is also considered. This Analysis reveals the racial and ethnic injustice in rooftop solar participation.

Multnomah County's Energy Justice Goals

How do we get there?

Multnomah County's Clean Energy Goals

100% of electricity needs by 2035

100% of energy needs by 2050

Multnomah County's Clean and Just Energy Goals

2% via community-based RE

Including low-income residents in social, economic, and environmental benefits

Prioritize recruitment of women and BIPOC communities in clean energy workforce

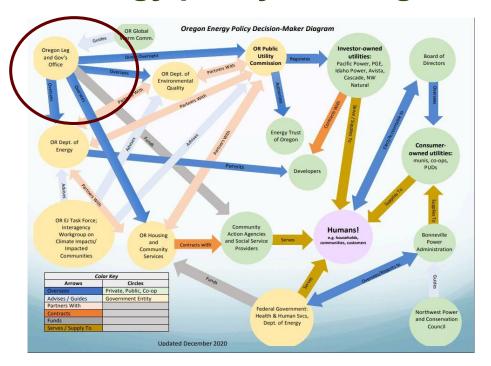
Partnership with OR tribes and native communities, communities of color, low-income communities to address environmental, economic, social inequities

Environmental Justice Resolution

Environmental justice (EJ) is the equal protection from and equitable distribution of environmental health hazards, burdens, *and benefits*.

Office of Sustainability to apply EJ lens in all relevant areas of our work.

How do we get there?



Federal policy

State policy

Local policy

State energy policy: The legislature

Credit: Heather Moline and Patty Rincon (NW Energy Coalition)

Who decides? It is complicated

Oregon Energy Policy: Electricity

2035: 100% of community-wide electricity needs with renewable energy

- Coal to Clean: 45% renewables
- 100% Clean Energy for All: 90% below baseline emissions*.

*Average annual GHG emissions for 2010-2012. Pacific Power, PGE, providers for large industrial/commercial customers

Oregon Energy Policy: Electricity

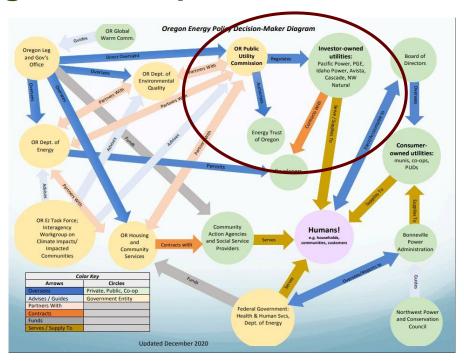
2050: 100% of community-wide energy needs with renewable energy

- Coal to Clean: 50% renewables
- 100% Clean Energy for All: 100% below baseline emissions level by 2040

Local governments can create programs.

Oregon Energy Policy: Energy Justice

- Justice is central to HB 2021 possible due to EJ leadership
- Minimizing burden on EJ communities, and maximizing benefits to Oregon communities
- Engagement of EJ communities as utilities implement
- Grant program for community energy projects


Oregon Energy Policy: Energy Justice

HB 2475 gives the PUC the authority to consider "differential energy burdens on low-income customers and other economic, social equity or environmental justice factors that affect affordability for certain classes of utility customers"

Procedural equity - funding for PUC participation

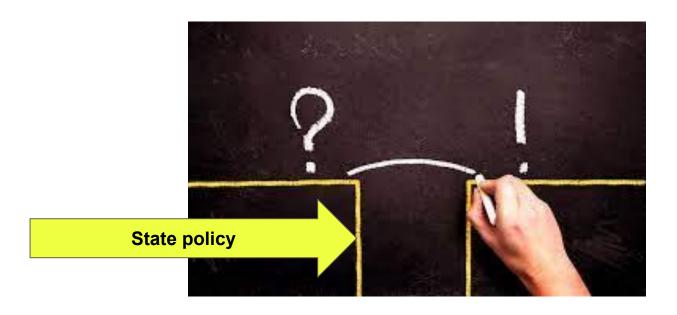
Agencies implement those laws

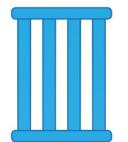
Who decides? It is complicated

Policy implementation: The Utilities

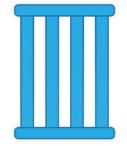
Check your utility's electricity mix here

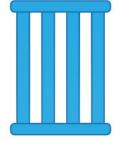
Stakeholder processes

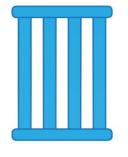


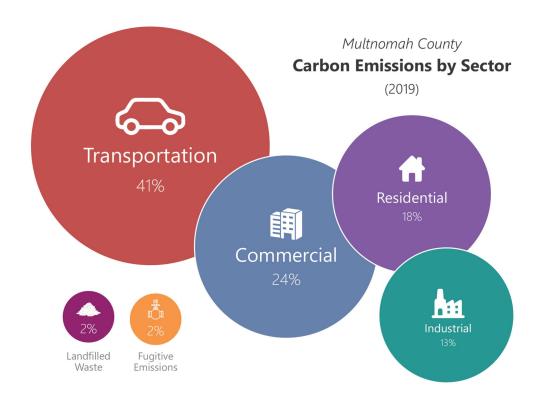

Multnomah County's **Energy Justice** Goals

How do we get there?


The Four Pillars

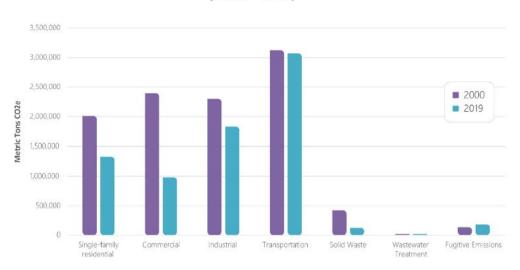

JUST TRANSITION


EFFICIENCY

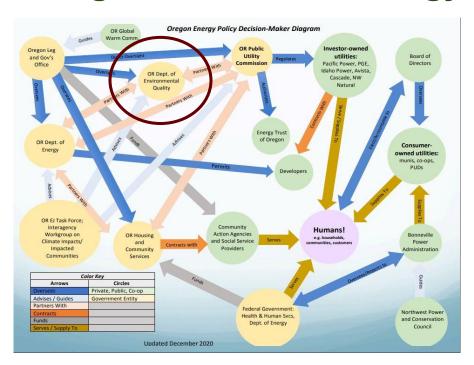


UTILITY DECARBONIZATION

Decarbonization: Other Sectors



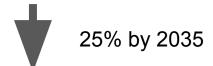
Decarbonization: Other Sectors


Multnomah County

Emissions Change for All Sectors

(2000 - 2019)

How do we get there? State energy policy

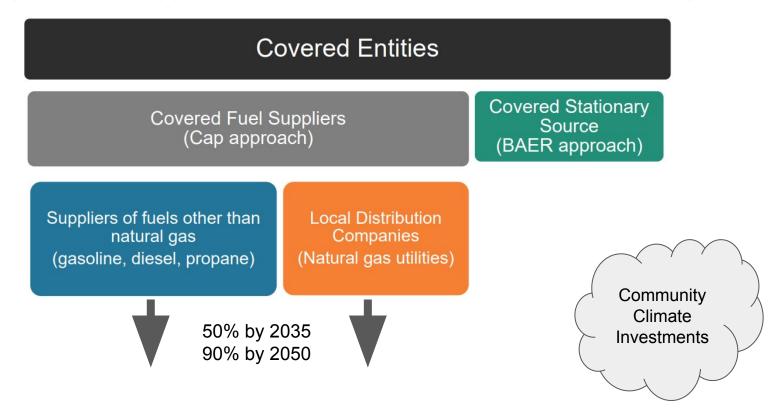

Credit: Heather Moline and Patty Rincon (NW Energy Coalition)

Who decides? It is complicated

Oregon Energy Policy: Clean Fuels Program

All about 'carbon intensity'

To move from



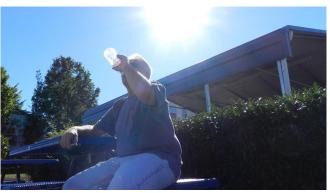
То

Oregon Energy Policy: Climate Protection Program

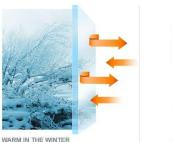
Environmental Justice: Co-pollutants

Energy Efficiency

Electrification & 'Smart' Grid

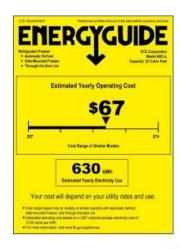


Resilience


What can you do?

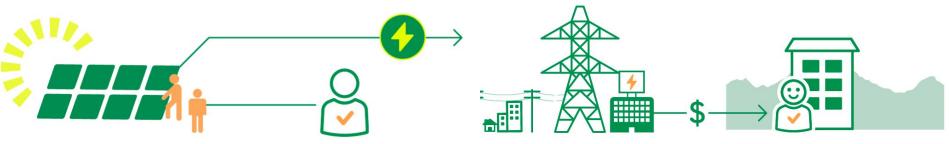
Use less energy

"the greenest electron is the one not used"



Heat-reflecting technology helps keep

Green your power Voluntary renewables programs



Green your power

Community solar

Project Managers build and operate community solar projects.

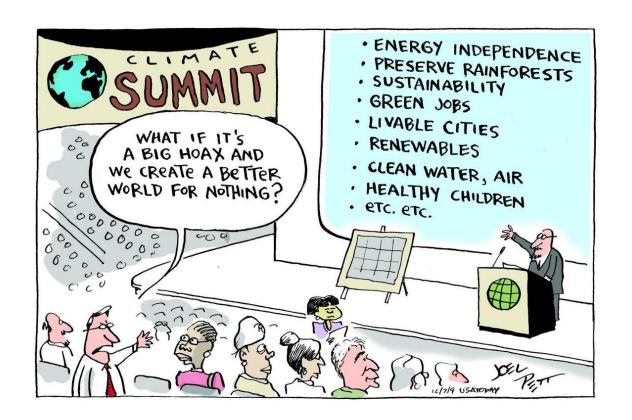
Customers subscribe through a Project Manager to a portion of a community solar project.

Solar electricity from the project goes to the utility grid.

Every month, participants receive a credit on their utility bill for the electricity produced by their project.

Green your powerMake your own power

Flex your power Organize and advocate



Questions?

