

60 PERCENT - FOR REVIEW ONLY Pipelines Project Stormwater Report

Bull Run Filtration Pipelines Project

September 2022

Bull Run Filtration Pipelines Project

for review purposes only - Confidential.

Exhibit A.77

Pipelines Stormwater Management Report Bull Run Filtration Pipelines Project Multnomah County, Oregon

Emerio Project Number:	0545-006
City of Portland Permit Numbers:	TBD

I hereby certify that this Stormwater Management Report for this project has been prepared by me or under my supervision and meets minimum standards of the Multnomah County Design and Construction Manual (MCDCM) and normal standards of engineering practice. I hereby acknowledge and agree that the jurisdiction does not and will not assume liability for the sufficiency, suitability, or performance of drainage facilities designed by me.

This report was prepared in support of the City of Portland Water Bureau's Bull Run Filtration Pipelines Project land use applications in Multnomah County and reflects the current status of the project design, which is approximately 60% complete as of the date of this report. This design is subject to change and has been prepared for the specific purpose of addressing conformance of the project to the Multnomah County land use requirements as expressed in the Multnomah County Code.

Prepared For: Multnomah County 18600 SE Stark St 1120 SW Ave, Rm 613 Gresham, OR 97233 Prepared By: Patrick Tortora, PE Emerio Design, LLC 6445 SW Fallbrook PI, Suite 100 Beaverton, OR 97008 ptortora@emeriodesign.com (503) 746-8812

Submittal #	Date	Returned	Comments

Table of Contents

1.0	Introduction							
1.1	Project Overview and Description							
1.2	Proje	ct Location6						
1.3	Descr	iption of Existing Conditions7						
1	.3.1	Drainage Basins						
1	.3.2	Existing Soil Characteristics						
1	.3.3	Environmentally Sensitive Areas9						
1.4	Offsit	e Drainage Analysis10						
1.5	Propo	osed Improvements						
1.6	Ageno	cy Stormwater Criteria and Permitting11						
2.0	Meth	odology12						
2.1	BMP	Selection12						
2	.1.1	Stormwater Quality Treatment13						
2	.1.2	Stormwater Flow Control14						
3.0	Analy	sis 14						
3.1	Propo	osed Stormwater Flow Control and Water Quality14						
4.0	Engin	eering Conclusions						
4.1	Dispe	rsion Analysis15						
4.2	Hydra	aulic Crossings						
4.3	Concl	usion17						
5.0	Opera	ations & Maintenance						

Appendices

Appendix A: Figures

 Figure 1 - Vicinity Map
 Figure 2 –Drainage Basins Map
 Figure 3 - Hydraulic Crossings Drainage Areas

 Appendix B: Stormwater Drawings

 Bull Run Filtration Project Pipelines Stormwater Plan

 Appendix C: References

 NRCS Soils Web Map

TR-55 Table 2-2a Runoff Curve Numbers for Urban Areas ODFW Fish Habitat and Barriers

Appendix D: Calculations

SBUH Calculations for 25-year peak discharge for Hydraulic Crossings HY-8 Calculations for Hydraulic Crossings

Appendix E: Operation & Maintenance Vegetated Filter Strip

Appendix F: Stormwater Certification Form

Tables

Table 1-1. Drainage Basin Area Summary	8
Table 1-2: Hydraulic Crossing Drainage Areas Summary	. 10
Table 4-1. Hydraulic Crossing Minimum Pipe Size	. 16

1.0 Introduction

1.1 Project Overview and Description

The water supply for the City of Portland includes two sources: the Bull Run Watershed and the Columbia South Shore Wellfield (CSSWF). In addition to the City of Portland, the Water Bureau provides potable water to 19 wholesale customers. The Bull Run Watershed, located east of Portland in the Mount Hood National Forest, is the primary source of water. The 102 square mile, protected watershed is managed by the U.S. Forest Service in cooperation with the Water Bureau. There are two dam structures within the watershed that create two surface water reservoirs with a combined storage capacity of 16.5 billion gallons. This water is transported from the lower dam near the headworks site to the Portland metro area via three large-diameter pipelines.

The Bull Run supply is currently an unfiltered water supply and has consistently met the filtration avoidance criteria under the Surface Water Treatment Rule for source water quality, watershed management, and disinfection. Prior to distribution, the supply is treated with free chlorine for primary disinfection, ammonia to form chloramines as a residual disinfectant, and sodium hydroxide for corrosion control. The Water Bureau supplements the Bull Run source as needed with groundwater withdrawn from the CSSWF. The CSSWF is primarily used as an emergency backup, typically during turbidity events in the Bull Run Watershed and for summer supply augmentation.

In August 2017, the Portland City Council voted to build the Bull Run Filtration Facility to meet the U.S. Environmental Protection Agency (EPA) treatment requirements for *cryptosporidium*. As a part of the proposed plan, new raw water pipelines will intersect the existing conduits from the Bull Run Watershed and redirect the flow to the new Filtration Facility. New finished water pipelines will then convey water from the Filtration Facility and reconnect to the existing conduits. The three conduits currently in operation are referred to as Conduit 2 (C2), Conduit 3 (C3), and Conduit 4 (C4) in order from oldest to newest. Following completion of the Filtration Pipelines Project, much of the approximately 20 miles of existing conduit system from the Bull Run Watershed to the three conduits that deliver drinking water to the Portland Metropolitan Area will remain in service, with approximately 2.7 linear miles of the existing conduits being replaced with the new raw and finished water pipelines and Filtration Facility.

The Filtration Pipelines Project consists of five primary elements of work:

- 1. Two raw water pipelines:
 - a. Lusted Raw Water Pipeline North and South (LRWP North and LRWP South)
 - b. Two raw water tunnels and shaft system
- 2. Two finished water pipelines from the Filtration Facility to the Finished Water Intertie:
 - a. Altman Finished Water Pipeline (AFWP), and
 - b. Lusted Finished Water Pipeline (LFWP)
- 3. One intertie, flow control, and metering facility (Finished Water Intertie);

- a. and three finished water pipelines from the Finished Water Intertie to the existing conduit connections:
 - i. Conduit 2 Finished Water Pipeline (C2FWP)
 - ii. Conduit 3 Finished Water Pipeline (C3FWP), and
 - iii. Conduit 4 Finished Water Pipeline (C4FWP).
- 4. The AFWP and LFWP include a trenchless crossing from the Filtration Facility south of Carpenter Lane to Dodge Park Boulevard.
- 5. A new small-diameter water distribution pipeline from AFWP and LFWP in SE Dodge Park Boulevard at the intersection of SE Cottrell Road, primarily installed via trenchless construction. The northerly terminus of this new Lusted Road Distribution Main connects to the existing SE Lusted Road Distribution Main located east of Lusted Hill Treatment Facility.

The purpose of this report is to evaluate the existing and proposed stormwater conditions along the length of the Filtration Pipelines Project limits. The report includes an analysis and discussion on the following:

- Existing conditions of the Project Area, including environmentally sensitive areas meeting the jurisdiction stormwater requirements (Multhomah County)
- Proposed stormwater quality treatment
- Analysis of offsite runoff conditions
- Additional regulatory triggers

A separate stormwater report addresses the individual site of the Finished Water Intertie, located on the Finished Water Pipeline alignment at SE Lusted Road east of SE Altman Road.

1.2 Project Location

See Appendix A for the Vicinity Map of the project limits. The project comprises a corridor of multiple parallel pipelines travelling a distance of 2.7 miles from end to end through right-of-way (ROW) and easement on private property within unincorporated Multnomah County. The project pipeline corridors are generally described by the following Segment Routes for the purpose of this report:

- Project beginning on SE Lusted Road approximately one-half mile north of the intersection at SE Dodge Park Boulevard, connecting at existing pipelines in the SE Lusted Road ROW, then travelling westward through easements on private property, then;
- 2. Ending at the southeast corner of the new Filtration Facility (under separate contract), at which point the continued pipeline is continued under separate contract, then:
- 3. Beginning again at the northwest corner of the new Filtration Facility (under separate contract) and travelling northbound to SE Dodge Park Boulevard, then;

- 4. Travelling west within the SE Dodge Park Boulevard ROW, turning north at a point approximately 0.6 miles west of the intersection at SE Cottrell Road and continuing northward in easements on private property, then;
- 5. Turning at SE Lusted Road, travelling westward in the ROW of SE Lusted Road to the intersection at SE Altman Road, then;
- 6. Turning north at SE Altman Road, travelling north in the ROW of SE Altman Road to SE Oxbow Road.

Three connections to existing pipelines are made at the end of the project, one each at the intersections of:

- SE Lusted Road at SE Altman Road
- SE Altman Road at SE Pipeline Road
- SE Altman Road at SE Oxbow Drive

As referenced in this report, the limits of the project are the widths of corresponding ROW or the widths of easements on private property which comprise the corridor of the proposed pipelines.

1.3 Description of Existing Conditions

1.3.1 Drainage Basins

The project is located within the Beaver Creek-Sandy River Watershed. The pipeline corridors cross multiple drainage basins which discharge to separate reaches along Beaver Creek or lowland areas. The pipelines are primarily proposed within the roadway section, which is a crowned section. Drainage basins were delineated as the ultimate drainage basin to each waterbody, as opposed to only the proposed linear segment of pipeline.

A drainage basin map is shown in Appendix A Figure 2, with Table 1-1 showing the size of each drainage basin and its discharge location.

Table 1-1. Drainage Basin Area Summary						
Drainage Basin	Area (Acres)	Discharge Location				
А	35.62	Middle Fork Beaver Creek (West of Altman Road)				
В	17.83	Glendale Pond				
С	67.16	Middle Fork Beaver Creek (West of Altman Road)				
D	39.88	Sester Reservoir #1				
E	32.53	Middle Fork Beaver Creek (West of Altman Road)				
F	110.94	Surveyed Wetlands				
G	65.80	North Fork Beaver Creek				
Н	57.13	North Fork Beaver Creek				
I	68.40	North Fork Beaver Creek				
J	11.68	Lusted Creek				
К	10.66	Johnson Creek Tributary				
L	90.26	Surveyed Wetlands				
Total	572.27	Beaver Creek-Sandy River Basin				

1.3.2 Existing Soil Characteristics

The project limits span multiple soil types identified by the National Resource Conservation Service (NRCS) Web Soil Maps:

- SE Altman Road:
 - Cornelius Silt Loam, 8 to 15 percent slopes.
 - Powell silt loam, 0 to 3 percent slopes, 3 to 8 percent slopes, 15 to 30 percent slopes.
 - Wollent silt loam.
- SE Lusted Road (Finished Water Pipelines scope)
 - Cornelius Silt Loam, 8 to 15 percent slopes.
 - Powell silt loam, 0 to 3 percent slopes, 3 to 8 percent slopes.
 - Wollent silt loam.
- Easement through Private Property (Finished Water Pipelines scope, between Dodge Park Blvd. and Lusted Rd.)
 - Cornelius Silt Loam, 8 to 15 percent slopes.
 - Mershon Silt Loam, 0 to 8 percent slopes, 8 to 15 percent slopes, 15 to 30 percent slopes.
 - Wollent silt loam.
- SE Dodge Park Blvd:
 - Cazadero Silty Clay Loam, 0 to 8 percent slopes, 8 to 15 percent slopes.

- Mershon Silt Loam, 0 to 8 percent slopes, 8 to 15 percent slopes, 15 to 30 percent slopes.
- Wollent silt loam, 0 to 8 percent slopes.
- Easement through Private Property (Raw Water Pipelines scope, west of SE Lusted Rd.)
 - Cazadero Silty Clay Loam, 0 to 8 percent slopes.
- SE Lusted Rd. (Raw Water Pipelines scope)
 - Cazadero Silty Clay Loam, 0 to 8 percent slopes.

The origin of all these soil types is from a mixed alluvium that has glacial silt and clay with small particle size. These soils have the following K_{sat} values (referring to the soils permeability to transmit water when saturated) and Hydrologic Soil Group (Rated A, B, C, D with A as highest permeability to D as lowest):

- Cornelius Silt Loam, K_{sat} of 0.64 inches per hour, Hydrologic Soil Group C.
- Powell silt loam, K_{sat} of 1.6 inched per hour, Hydrologic Soil Group D.
- Wollent silt loam, K_{sat} of 0.42 inches per hour, Hydrologic Soil Group C/D.
- Mershon Silt Loam, K_{sat} of 0.48 inches per hour, Hydrologic Soil Group C.
- Cazadero Silty Clay Loam, K_{sat} of 0.50 inches per hour, Hydrologic Soil Group C.

See Appendix C for NRCS Web Soil Survey Maps and more information.

Based on the Geotechnical Engineering Report, "Filtration Pipelines Project – Finished Water Pipeline" dated February 2022 by Jacobs Engineering Group, the soil investigations at soil boring logs along the pipeline alignments are consistent with the silty clay loam characteristics as noted in the NRCS Web Soil Maps. Infiltration testing was not performed at any locations along the pipeline alignment outside of the Filtration Facility site during investigations.

1.3.3 Environmentally Sensitive Areas

<u>Wetlands</u>

There are no County-mapped wetlands along the pipeline corridor. Potential wetland areas were identified by Winterbrook Planning during site observations, and overlay zones were applied to those areas along the pipeline corridors to minimize any impact. All County designated Significant Environmental Concern (SEC) areas and potential wetland areas are shown in Appendix B in the Stormwater Drawings, and will not be impacted by the pipeline project.

Waterbodies

Portions of the project limits drain to segments of North Fork Beaver Creek and Middle Fork Beaver Creek, specifically near the Bissel and Oxbow/Altman segments. Based on Oregon's Department of Fish and Wildlife (ODFW) Web Map, these segments are not considered fish bearing streams or tributaries based on ODFW identified segments, however, extra precaution such as stormwater treatment Best Management Practices (BMPs) will be used upstream of these areas. See Appendix C for Fish Habitat Distribution and Barriers near the Project.

Floodplains

The project does not intersect any areas mapped within the Federal Emergency Management Areas (FEMA) mapped floodways for the 100-year flood, according to FEMA FIRMette Panel 41051C0427J, effective 2/1/2019.

1.4 Offsite Drainage Analysis

Offsite mixed agricultural and rural residential land drains into the ROW for most of the project limits. The ROW impacted by the proposed pipeline construction are primarily two-lane roadways with crowned prism sections where offsite drainage is currently collected or conveyed by the roadway ditch to culverts which cross the roadways.

There are existing culverts (hydraulic crossings) that connect these offsite drainage basins in the project area and have been reviewed for capacity of the 25-year storm in Section 3.1. Table 1-2 shows the existing hydraulic crossing drainage areas sizes, and Appendix A Figure 3 shows the drainage basin locations associated with the respective hydraulic crossings. Additional survey is being performed to identify existing crossings with unknown design parameters at this phase of the project design.

Table 1-2: Hydraulic Crossing Drainage Areas Summary							
Hydraulic Crossing ID	Culvert Size and Type	Drainage Area (acres)					
DA 1	12-inch Reinforced Concrete Pipe	28.29`					
DA 2	18-inch Corrugated Plastic Pipe	33.11					
DA 3	24-inch Corrugated Plastic Pipe	90.27					
DA 4	72-inch concrete box culvert	12.82					
DA 5	Unknown	24.37					

1.5 Proposed Improvements

The project proposes the installation of over 30,000 linear feet of new large-diameter welded steel pipeline which conveys both unfiltered (raw) and filtered (finished) water to and from the proposed drinking water Filtration Facility. Construction of these large-diameter pipelines requires significant trench width in public ROW and, subsequently, reconstruction of existing roadways over the pipeline corridor. Existing culverts (hydraulics crossings) which convey stormwater across the ROW impacted by this project will be replaced to existing line and grade. Verification of hydraulic capacity of those existing crossings is included in Section 3 and Appendices.

1.6 Agency Stormwater Criteria and Permitting

Multnomah County is the governing agency for stormwater requirements within the pipeline project limits. With two exceptions, the project limits for pipeline construction are to be restored to pre-construction conditions. The first exception is the Finished Water Intertie site, addressed under a separate report cover, which will be improved with permanent stormwater facilities, pavement, a new electrical building, and a large, buried vault. The second exception is the improvement of existing dirt/gravel farm roads with new gravel roads with unchanged surface characteristics, which is not expected to change the runoff coefficient from the existing condition. The existing dirt/gravel farm roads are compacted, and will be improved with gravel with the same drainage direction. Otherwise, easements on private property are to be restored with in-situ topsoil and seeding, unpaved areas within ROW are to be restored to original line and grade and seeded with native grasses, and roadway pavement in ROW is to be repaved matching original line and grade. Though all new paved roadway is replacement of existing roadway, the project replaces over 500 square feet of impervious surface, and therefore stormwater flow control and stormwater quality treatment are required per Multnomah County Code (MCC) Section 39.6235, which states,

"(A) Persons creating new <u>or replacing</u> existing impervious surfaces exceeding 500 square feet shall install a stormwater drainage system as provided in this section...

(C)The provisions of this section are in addition to and not in lieu of stormwater and drainage requirements in the Multnomah County Road Rules and Design and Construction Manual, including those requirements relating to impervious surfaces and proposals to discharge stormwater onto a county ROW.

(D) The stormwater drainage system required in subsection (A) shall be designed to ensure that the rate of runoff for the 10-year 24- hour storm event is no greater than that which existed prior to development at the property line or point of discharge into a water body."

The stormwater facilities shall be designed in accordance with Section 5 Drainage of the Multnomah County Design and Construction Manual (MCDCM). In the MCDCM Section 5.1.2, there is a contradictory statement to the MCC regarding flow control.

"Flow control and volume storage shall be analyzed for the 2, 5, 10, and 25 year storm events for the pre-development discharges, and the post development discharges. The post-developed discharge flow rate shall be controlled to the pre-development levels. In addition, initial discharge flow rate shall be controlled to one half the 2 year flow rate before any development."

The contradiction between the 10-year and 25-year storm in Multnomah's Code and the MCDCM is related to MCDCM's reference of the City of Portland's Stormwater Management Manual (SWMM), where the City of Portland uses urbanized stormwater practices, which have more stringent requirements and maintenance. Since this project is in rural Multnomah County and has similar project characteristics to a linear transportation project, the Oregon Department of Transportation (ODOT) Hydraulics Manual is proposed for drainage design guidance, which prioritizes dispersion as a stormwater BMP sized for water quality and the 10-year storm event.

In addition to stormwater requirements, the following regulatory district areas were considered that have stormwater impact requirements and may require additional permitting for this project:

- Oregon Department of Environmental Quality (DEQ)
 - 1200-C Construction Stormwater Permit
 - Per Oregon Department of Environmental Quality (DEQ), construction of the proposed pipelines will cumulatively disturb greater than one acre and will require a 1200-C Construction Stormwater Permit.
- Oregon Department of State Lands (DSL)
 - Joint Permit Application
 - Provide 50-foot buffers around all wetlands.

2.0 Methodology

To meet the Multnomah County Stormwater requirements, this project report follows the guidance of the ODOT stormwater requirements, which requires analysis and discussion of the infiltration and discharge hierarchy, along with the selection of Best Management Practices (BMP) for stormwater management.

2.1 BMP Selection

ODOT has an established hierarchy of stormwater treatment approaches and techniques that supports water quality goals and flow control. Per Section 14.9.1 in BMP Selection Prioritization of the Hydraulic Manual, the preference for stormwater treatment is to disperse treatment along the length of the project, using characteristics of the ROW to provide treatment. A

requirement to manage runoff for water quality does not mean that a treatment facility needs to be constructed—often the properties of the ROW provide excellent stormwater treatment without minimal enhancement.

ODOT's BMP Hierarchy has the following preference levels:

- 1. Use of the adjacent unaltered ROW as a treatment filter strip
- 2. Modification of the ROW (slopes, soils and/or vegetation) to provide treatment
- 3. Use of small, distributed treatment facilities along the length of the project
- 4. Use of large, consolidated treatment facilities.

This project will use preference levels 1 and 2 with the use of unaltered ROW as a treatment filter strip and modifications to the ROW to provide treatment as the appropriate BMPs for the linear characteristics of this project. Preference levels 3 and 4 are not considered as the underlying soils are not suitable for infiltration facilities, with a K_{sat} of less than 2 inches per hour.

2.1.1 Stormwater Quality Treatment

To meet the stormwater requirements for both stormwater quality treatment and flow control, the project proposes to use dispersion through native vegetation and enhancing the existing roadside shoulders with seeded vegetation and amended soils, referred to as Filter Strips in this report. The project discharges to environmentally sensitive areas, and per MCDCM Section 5.1.3 for water quality design standards,

"The quality of stormwater entering or leaving the ROW after a project shall be equal to or better than the quality of stormwater entering or leaving the ROW before the project."

Stormwater runoff shall be treated to remove 70% of TSS for the water quality design storm per Multnomah County, which is based on a depth of 1.81 inches using the ODOT water quality region design factor 67% of the 2-year 24-hour design storm with, based on ODOT TransGIS isopluvial maps.

The proposed improvements requiring stormwater quality treatment are the replaced roadways, and the project proposes to use Filter Strips adjacent to the roadways. The ODOT dispersion requirements for stormwater quality treatment closely align with the BMP practices for rural Multnomah County, especially for linear projects. Dispersion is the preferred practice for treatment per Chapter 14 of the ODOT Hydraulics Manual,

"The preference for stormwater treatment approaches is to disperse treatment along the length of the project, using the characteristics of the right of way to provide treatment, using consolidated facilities only when that is not possible."

Filter strips are a common and preferred BMP for ODOT for stormwater quality treatment and provide treatment through filtration and hydrologic attenuation through vegetated flow paths

through sheet flow. Filter strips are also easily maintained, affordable and accessible when compared to other BMPs. An operation and maintenance checklist has been established for the dispersion practices utilizing the ODOT Hydraulics Manual Sections 14.10.15, 14.11, as well as Chapter 4.

In addition to the water quality rates and TSS removal requirements, discharge from the project area eventually enters the waters of Beaver Creek-Sandy River Watershed. Per the Oregon 2018/2020 Integrated Report and the 2018/2020 Water Quality Report and List of Water Quality Limited Waters, dated April 2020 Beaver Creek has a TMDL and 303(d) listed.

Impairments:

- Bacteria
- Dissolved Oxygen
- Temperature
- DDT 4, 4'; DDD4, 4'; DDE 4,4'
- Dieldrin
- Heptachlor Epoxide

Amended soil and dispersion BMPs facilitate removal of the listed impairments through biofiltration of the amended soil and vegetation.

2.1.2 Stormwater Flow Control

As discussed in Section 1.6, this project shall provide flow control up to the 10-year storm per MCC Section 39.6235. Appropriately sized dispersion is considered to serve as a management technique for both water quality and flow control and is a recommended post-construction stormwater BMP. Filter strips will be designed per the ODOT Hydraulics Manual in order to meet flow control and water quality standards for Multnomah County. Since dispersion through filter strips can be used for both flow control and water quality, hydrologic modeling for flow control was not performed for each drainage basin as the existing and proposed condition does not change.

3.0 Analysis

3.1 **Proposed Stormwater Flow Control and Water Quality**

This project utilizes dispersion BMPs such as vegetated filter strips, native vegetation and seeding with soil amendment to manage the stormwater runoff from roadways by allowing stormwater to sheet flow across the shoulders and disperse into the vegetated areas located within the ROW.

Based on guidance from Chapter 14 Appendix B, Section 3.1in the ODOT Hydraulics Manual, filter strips for this project shall have the following criteria:

• The flow width of the filter strip must be equal to or greater than 5 feet

- The length of filter strips placed parallel to the road must be equal to the length of the contributing impervious or pavement area
- The lateral or cross-section of the filter strip must be equal to or greater than 1 percent and to not exceed 15 percent. The native existing slope is adequate if flow length exceeds
- The contributing impervious drainage area to filter strip shall have the following corresponding widths:
 - o 2% sloped filter strip to treat 4 feet of pavement for every 1 foot of filter strip
 - \circ 5% sloped filter strip to treat 3 feet of pavement for every 1 foot of filter strip
 - o 10% sloped filter strip to treat 2 feet of pavement for every 1 foot of filter strip
 - o 15% sloped filter strip to treat 1.5 feet of pavement for every 1 foot of filter strip

In addition to the filter strip geometry, all Filter Strips and impacted vegetation by the project shall be improved with amended soil. The native soil shall be amended with at least 3 inches of yard-debris compost and mixed to a depth of 12 inches before planting. The proposed dispersion areas and filter strip widths are shown in the Stormwater Drawings in Appendix B with the entire ROW proposed for soil amendment and seeding.

A key difference in the filter strips proposed for this project and the standard ODOT filter strip design criteria is that there is no 8-foot aggregate shoulder prior to discharging to the vegetated filter strip. The ODOT filter strip is intended for wider roadways and highways and needs larger shoulders for traffic-related design. The filter strip for this project starts at the existing aggregate roadway edge based on the standard local roadway cross-section in Multnomah County.

4.0 Engineering Conclusions

4.1 Dispersion Analysis

There are segments in which the ROW does not allow for the minimum dispersion widths to be met under the performance approach and general ODOT sizing guidance, for the following various reasons: limited ROW width; grade changes with an existing ditch; slopes steeper than 15%; impacts to wetland buffers. However, along the entirety of the project, existing soil within the ROW will be amended and seeded with the appropriate seedings per soil and land use type along the ROW, as shown on the drawings in Appendix B. Some areas are shown as undisturbed as those areas are already heavily vegetated with native plantings or within a SEC buffer. Parts of Segment Route 6 as described in Section 1.2 in this report does not meet the ODOT Filter Strip criteria, but does provide some water quality and flow control benefit post-construction based on Multnomah County criteria:

• **SE Altman Road (West Side):** The roadside is steeper than 15% and ROW width only allows for 8 feet past road edge. Beyond the ROW line is agricultural crop land with native vegetation buffer between road and cropland. The contributing impervious

drainage of 12 feet of width does not increase flows from the existing condition, and the 8 feet of vegetation within the ROW will be improved with amended soil and seeding— which improves the existing compacted earthen shoulder. This is an improvement from the existing condition and meets the water quality enhancement criteria per Multnomah County.

• SE Altman Road to SE Oxbow Drive Connection and Intersection: This segment is an existing steep road grade (greater than 10%), with heavily vegetated ditches and trees on either side of the road. The proposed BMP here is to protect the native vegetation in place (in the SEC zone), as it is already providing a water quality benefit for the roadway prior to discharging to Beaver Creek.

4.2 Hydraulic Crossings

Multnomah County Design and Construction Manual Section 5 requires that all culverts and pipes,

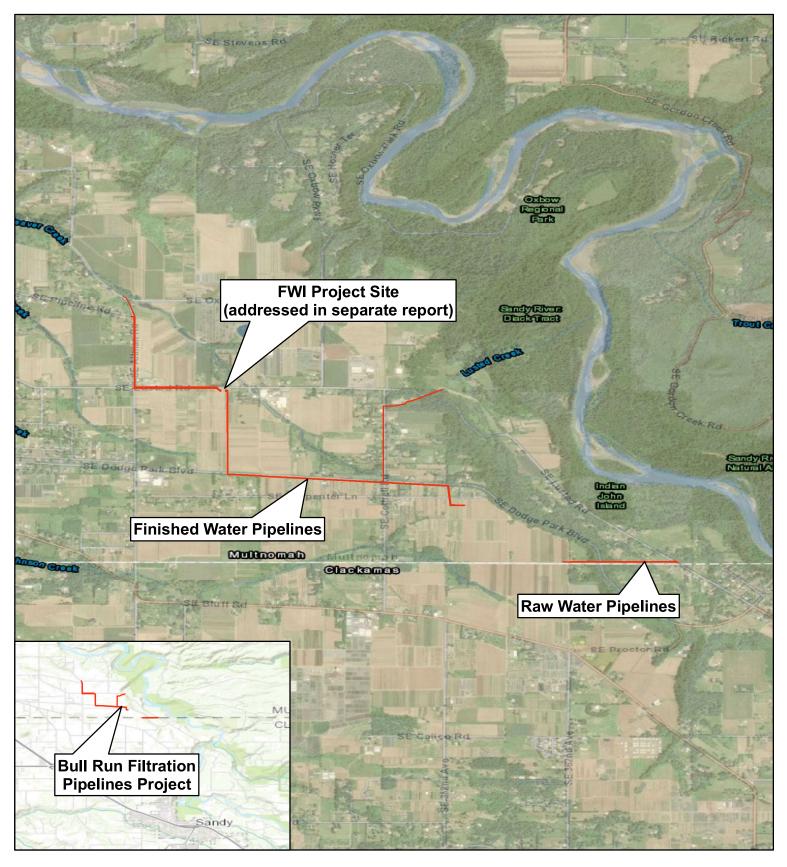
"pipes shall be designed to the 25-year storm, full build out of the ROW, and all natural runoff that drains into the ROW. If area of concern has been studied for stormwater planning, the pipe shall be designed so as to accommodate the stormwater plan flows. "

Culverts identified as impacted by this project need to meet the 25-year conveyance capacity. For this project, the 25-year 24-hour storm event depth is 3.8 inches, based on a Portland-modified NRCS 24-hour Type 1A rainfall distribution. The 25-year peak discharge for each hydraulic crossing was calculated using Santa Barbara Unit Hydrology (SBUH) method. The HY-8 Culvert Analysis Program was used to determine the minimum culvert size for each crossing to convey the 25-year peak discharge. Table 4-1 shows the proposed minimum size required to carry the 25-year storm or if the existing size is adequate. Based on the calculations, the project proposes to replace at least one culvert (DA-1) for a larger hydraulic opening. See Hydraulic Crossing Drainage Areas in Appendix D for calculations.

	Table 4-1. I	Hydraulic Crossing Minimum	Pipe Size		
Hydraulic Crossing ID	25-year peak discharge(cfs)	Existing Culvert Size and Type	Proposed Minimum Culvert Size		
DA 1	7.67	12-inch Reinforced Concrete Pipe	18-inch Corrugated Plastic Pipe		
DA 2	11.13	18-inch Corrugated Plastic Pipe	Maintain hydraulic opening of the 18-inch Corrugated Plastic Pipe		
DA 3	20.86	24-inch Corrugated Plastic Pipe	Maintain hydraulic opening of 24-inch Corrugated Plastic Pipe		
DA 4	4.64	72-inch concrete box culvert	Maintain Existing 72-inch concrete box culvert		

DA 5	7.86	Unknown	18-inch Corrugated Plastic
			Pipe

4.3 Conclusion


The proposed stormwater approach to the project meets the Multnomah County requirements for flow control and stormwater water quality treatment for the replaced impervious surfaces within the ROW. For each drainage basin, the dispersion provided by restored ROW unpaved area acting as vegetated filter strips matches or reduces the flow rates from existing conditions and provides water quality treatment prior to the runoff entering the downstream water body.

5.0 Operations & Maintenance

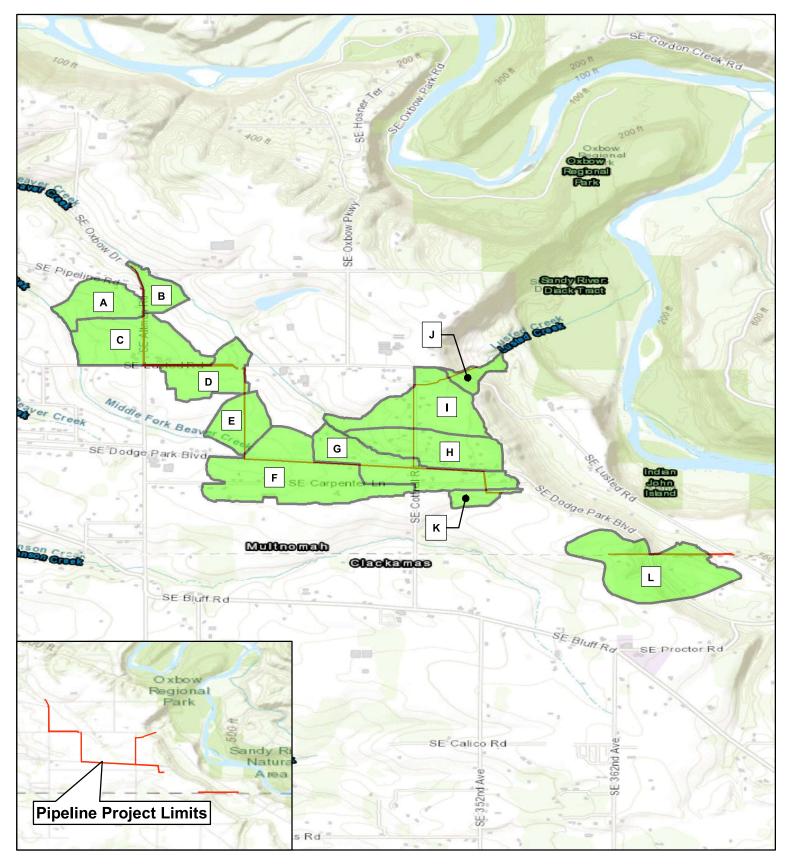
Multnomah County shall maintain all facilities within the ROW. Portland Water Bureau shall maintain all facilities on private property or easements. A copy of the City of Portland maintenance procedures listed in the SWMM will be used for the vegetated filter strips for this project, see Appendix E for City of Portland Operations & Maintenance procedures with Maintenance Log for the vegetated filter strips and maintenance components.

Appendix A: Figures

Figure 1: Project Vicinity Map Figure 2: Drainage Basins Map Figure 2: Hydraulic Crossing Drainage Areas Map

Legend

- Pipeline Project Area Extents


Note: 1. Aerial imagery source: ESRI, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, AeroGRID, IGN, and the GIS User Community

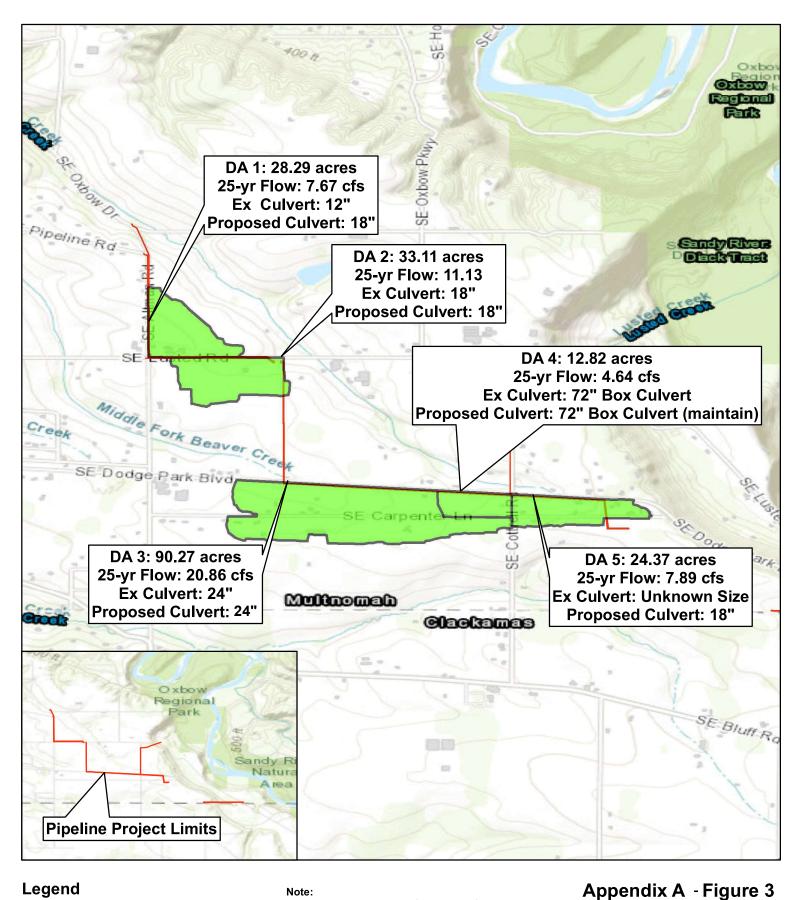
Appendix A - Figure 1 Vicinity Map Bull Run Pipeline Project Multnomah County

Ν

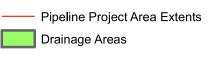
Legend

- Pipeline Project Area Extents

Ν


 Aerial imagery source: ESRI, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, AeroGRID, IGN, and the GIS User Community

0 0.25 0.5 1 Miles

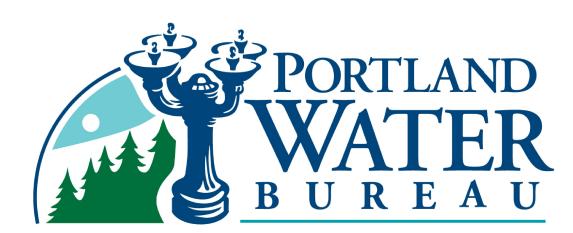

Appendix A - Figure 2 Drainage Basins Bull Run Pipeline Project

Bull Run Pipeline Project Multnomah County

Legend

Ν

Note: 1. Aerial imagery source: ESRI, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, AeroGRID, IGN, and the GIS User Community


0.25

0.5 1 Miles Jacobs

Hydraulic Crossings Bull Run Pipeline Project Multnomah County

Appendix B: Stormwater Drawings

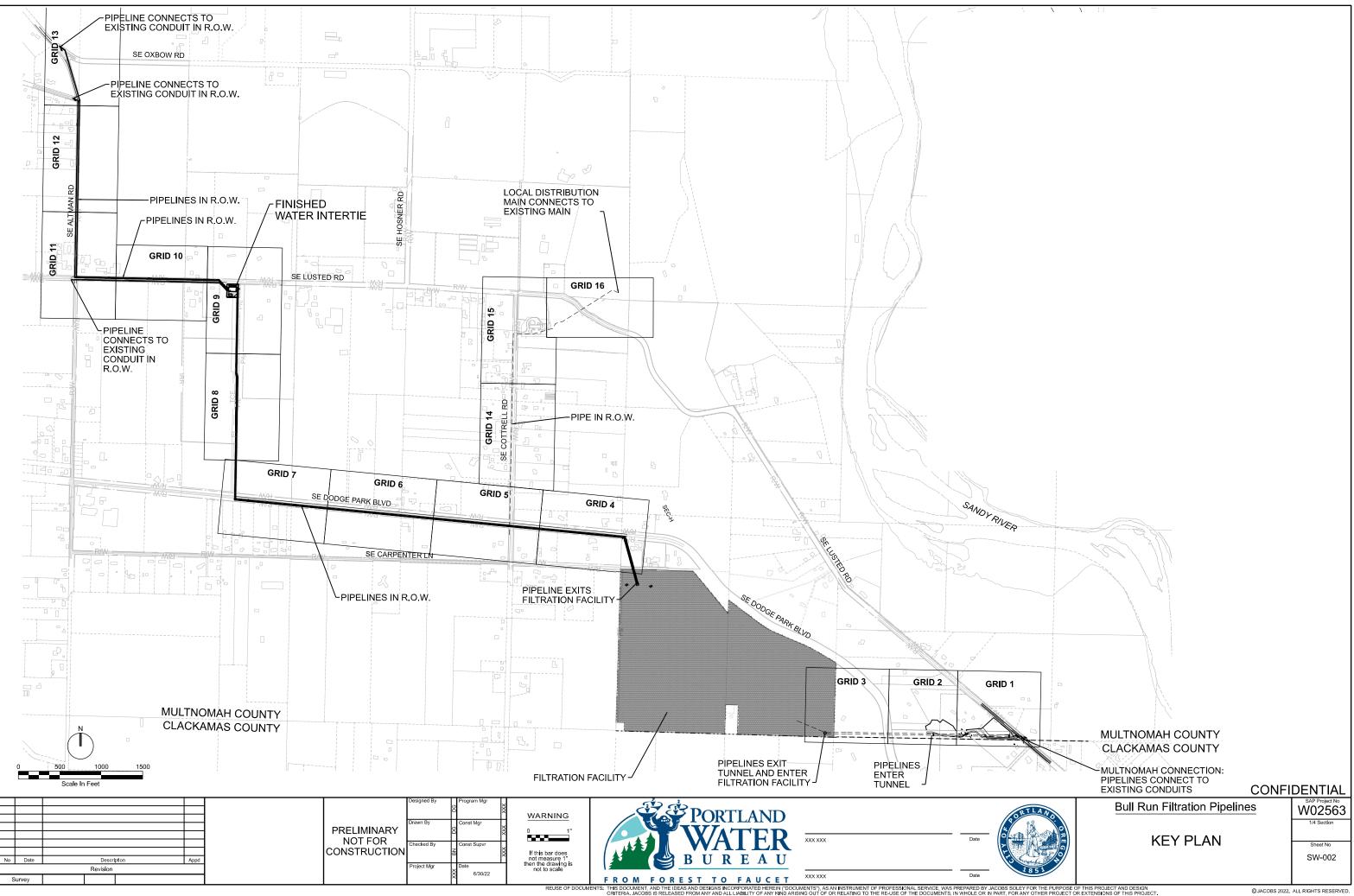
Bull Run Filtration Project Pipelines Stormwater Plans

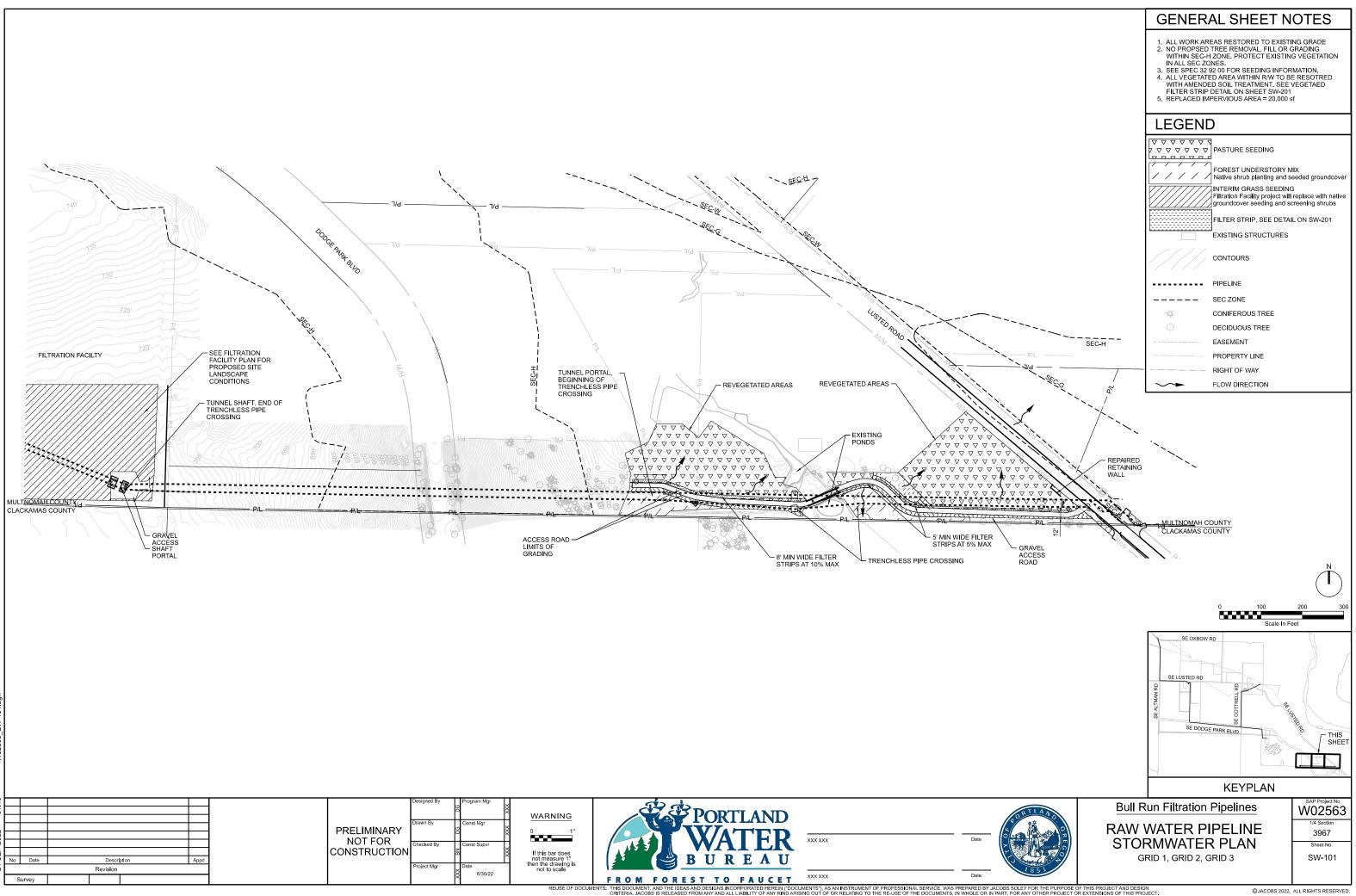
Bull Run Filtration Pipelines Project Stormwater Exhibits

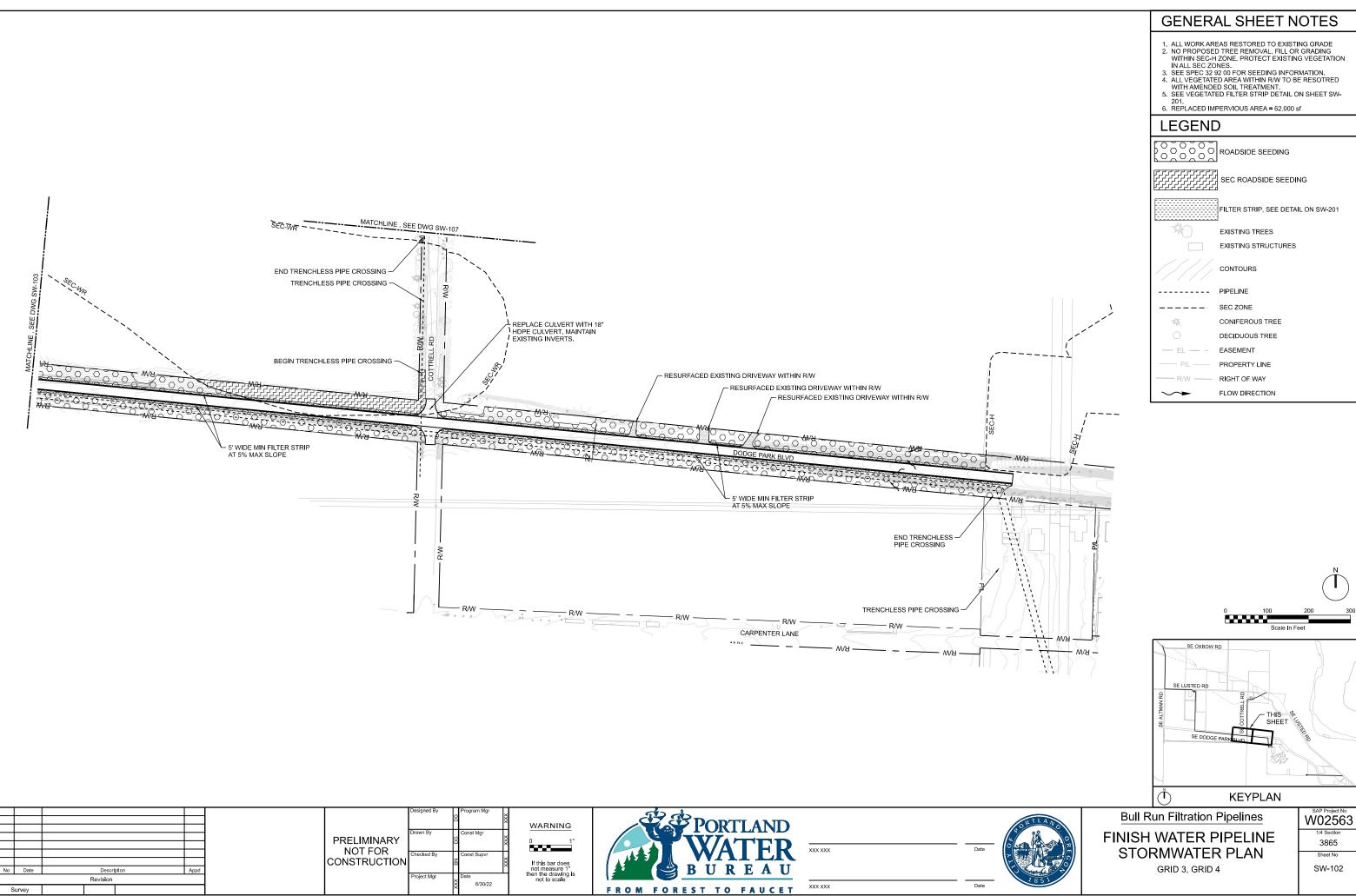
FROM FOREST TO FAUCET

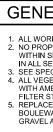
ANSI

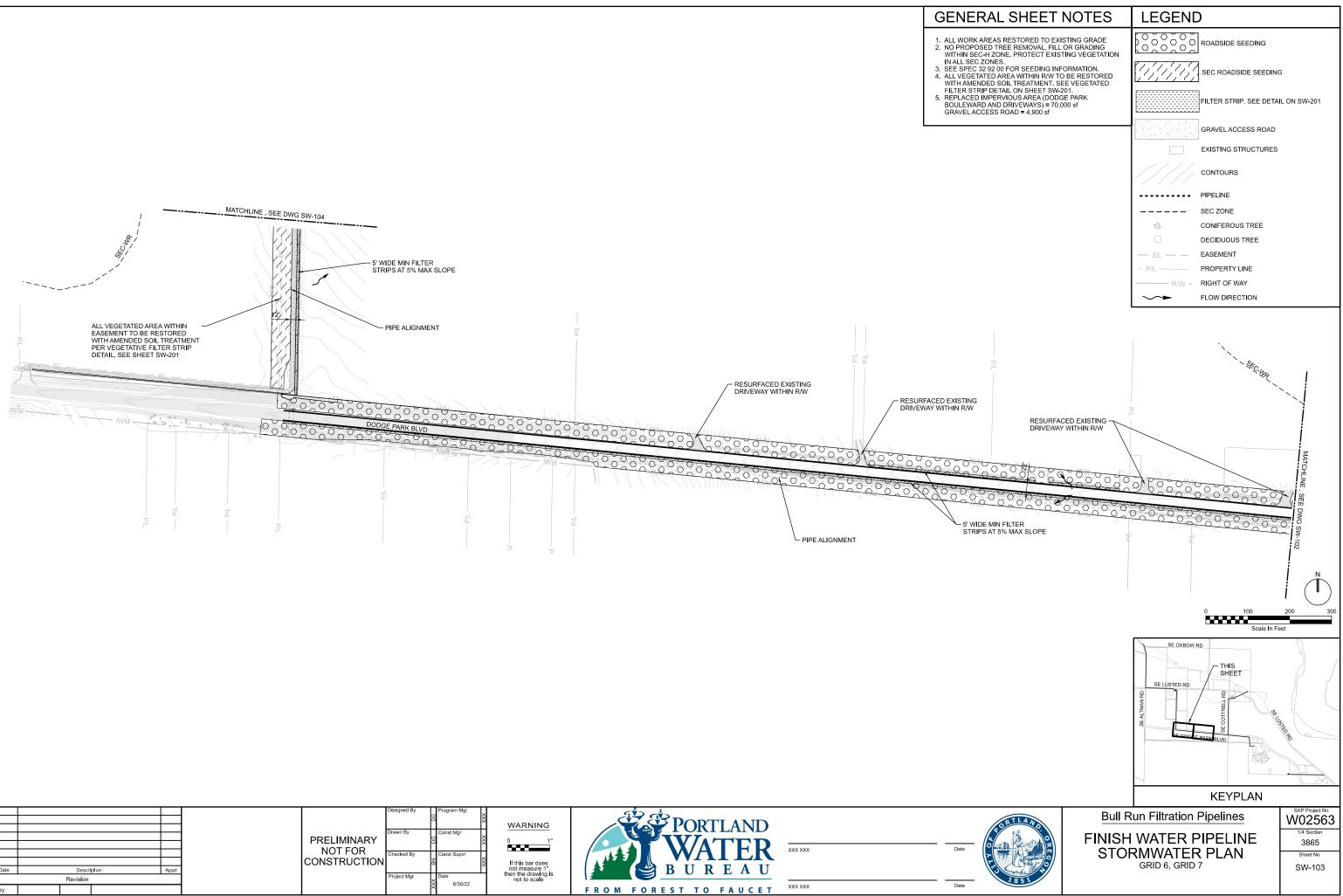
		STORMWATER EXHIBITS SUBMITTAL PACKA
SHEET NUMBER	SHEET NAME	PIPELINES DR
		PIPELINES DRAWINGS
1	SW-001	COVER SHEET
2	SW-002	KEY PLAN
3	SW-101	RAW WATER PIPELINE GRID 1, GRID 2, GRID 3
4	SW-102	FINSIHED WATER PIPELINE GRID 4, GRID 5
5	SW-103	FINISHED WATER PIPELINE GRID 6, GRID 7
6	SW-104	FINISHED WATER PIPELINE GRID 8, GRID 9
7	SW-105	FINISHED WATER PIPELINE GRID 10, GRID 11
8	SW-106	FINISHED WATER PIPELINE GRID 12, GRID 13
9	SW-107	FINISHED WATER PIPELINE GRID 14, GRID 15
10	SW-108	FINISHED WATER PIPELINE GRID 16
11	SW-201	STORMWATER EXHIBITS DETAIL


19-SEP-2022 22:56		PRELIMINAR NOT FOR CONSTRUCTIO	Checked By	Program Mgr	WARNING 0 1" If this bar does not measure 1" then the drawing is not to scale	PORTLAND WATER B U R E A U	XXX XXX	Date
	Survey			\$ 6/30/22		FROM FOREST TO FAUCET	XXX XXX	Date

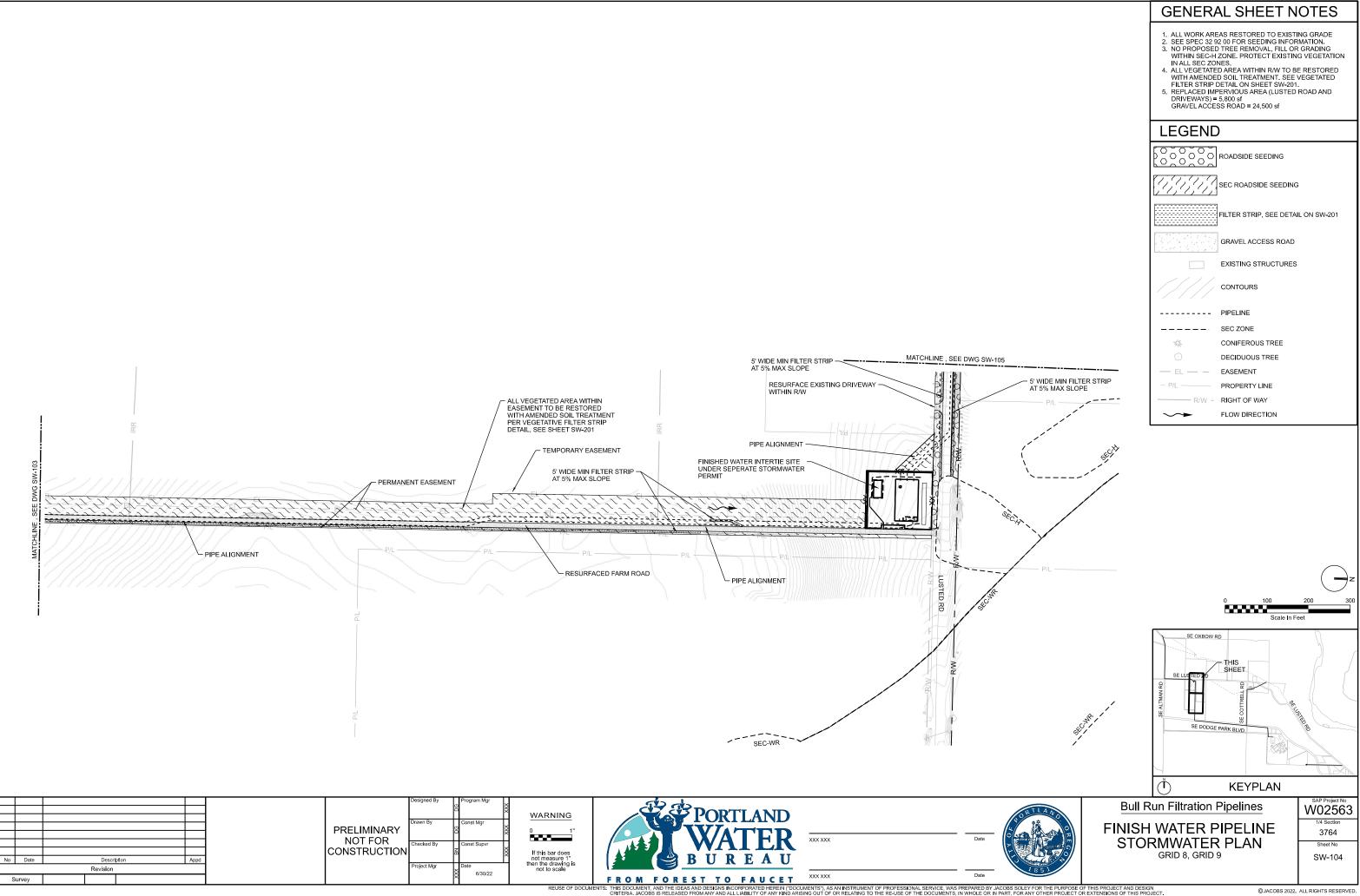

Portland Water Bureau


AGE	
RAWINGS	
3	
1	
3 5	
5	

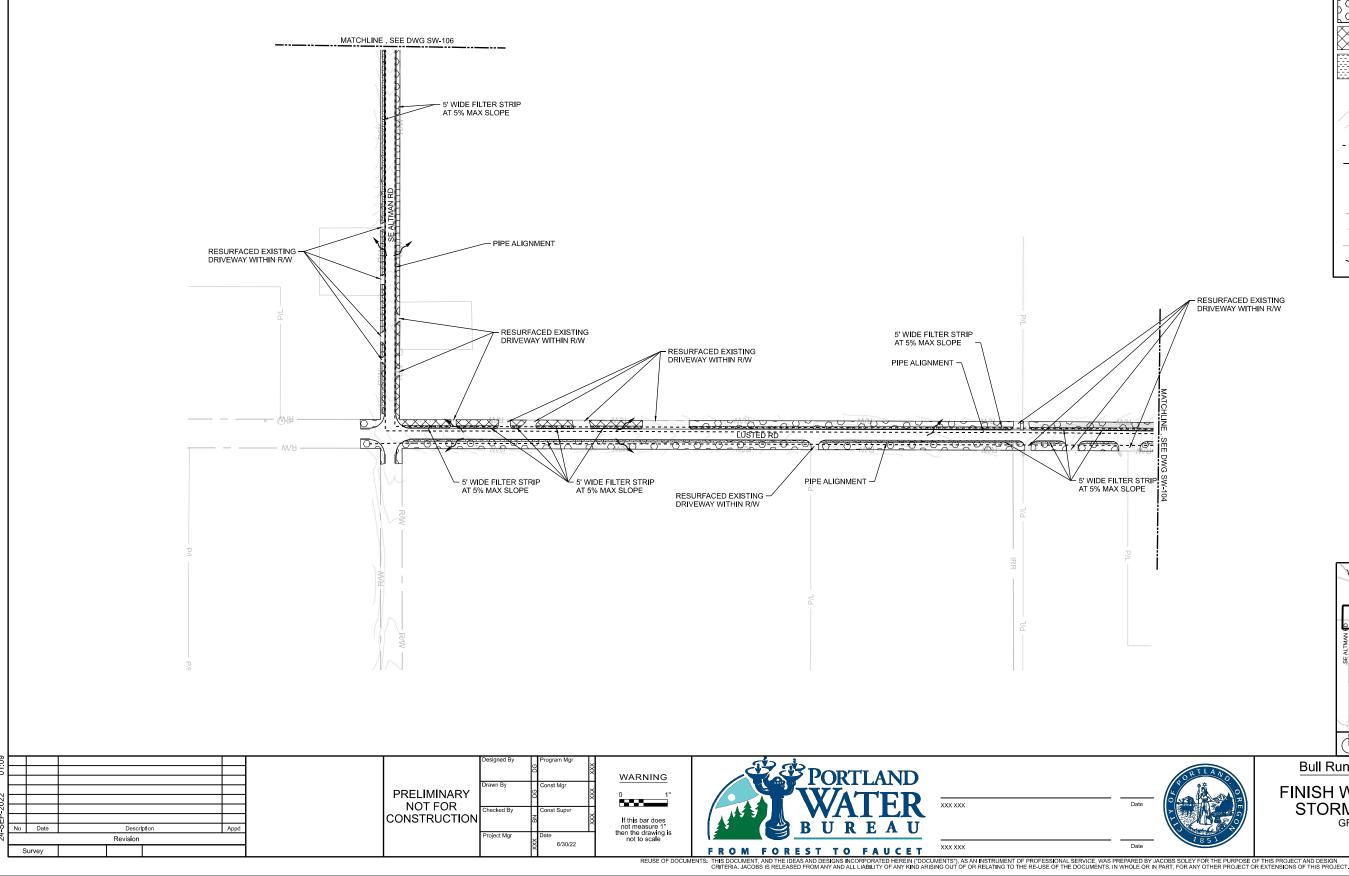

AS PREPARED BY JACOBS SOLEY FOR THE PURPOSE OF THIS PROJECT AND DESIGN IS, IN WHOLE OR IN PART, FOR ANY OTHER PROJECT OR EXTENSIONS OF THIS PROJECT

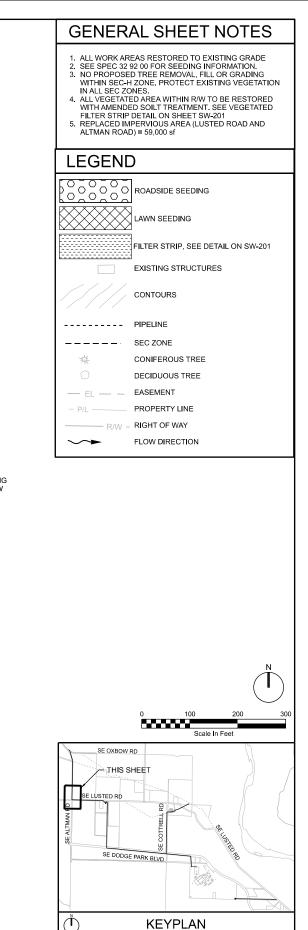


REUSE OF DOCUMENTS: THIS DOCUMENT, AND THE IDEAS AND DESIGNS INCORPORATED HEREIN ("DOCUMENTS"), AS AN INSTRUMENT OF PROFESSIONAL SERVICE, WAS PREPARED BY JACOBS SOLEY FOR THE PURPOSE OF THIS PROJECT AND DESIGN CRITERIA. JACOBS IS RELEASED FROM ANY AND ALL LIABILITY OF ANY KIND ARISING OUT OF OR RELATING TO THE RE-USE OF THE DOCUMENTS, IN WHOLE OR IN PART, FOR ANY OTHER PROJECT OR EXTENSIONS OF THIS PROJECT.

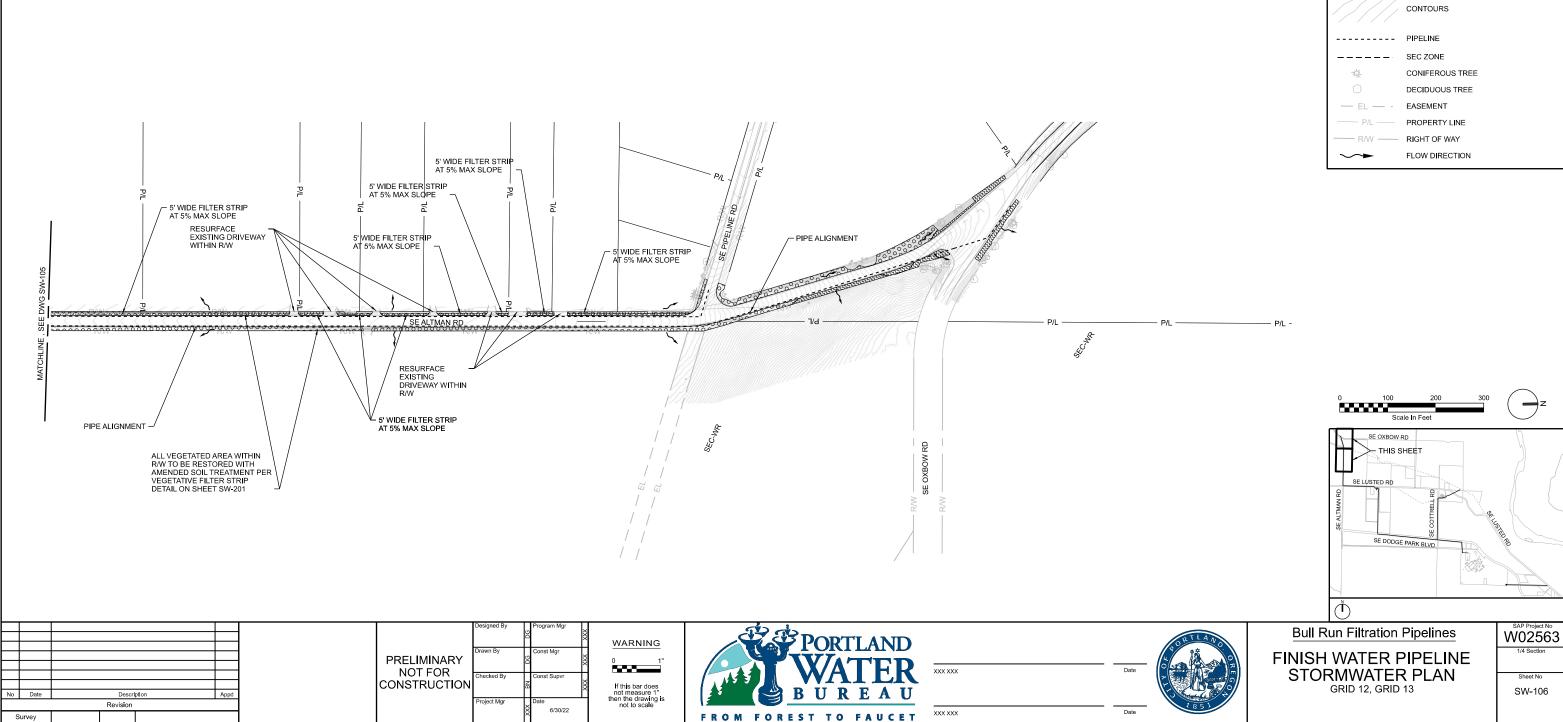


V02563 21.04

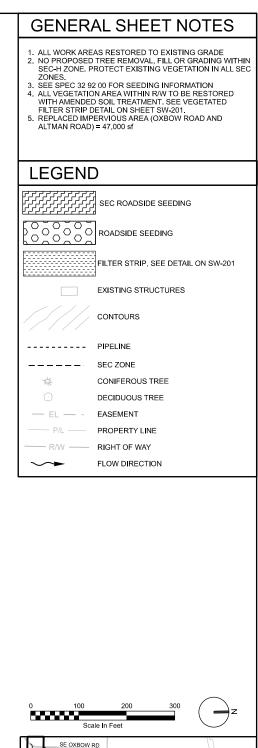

23-SEP-2022

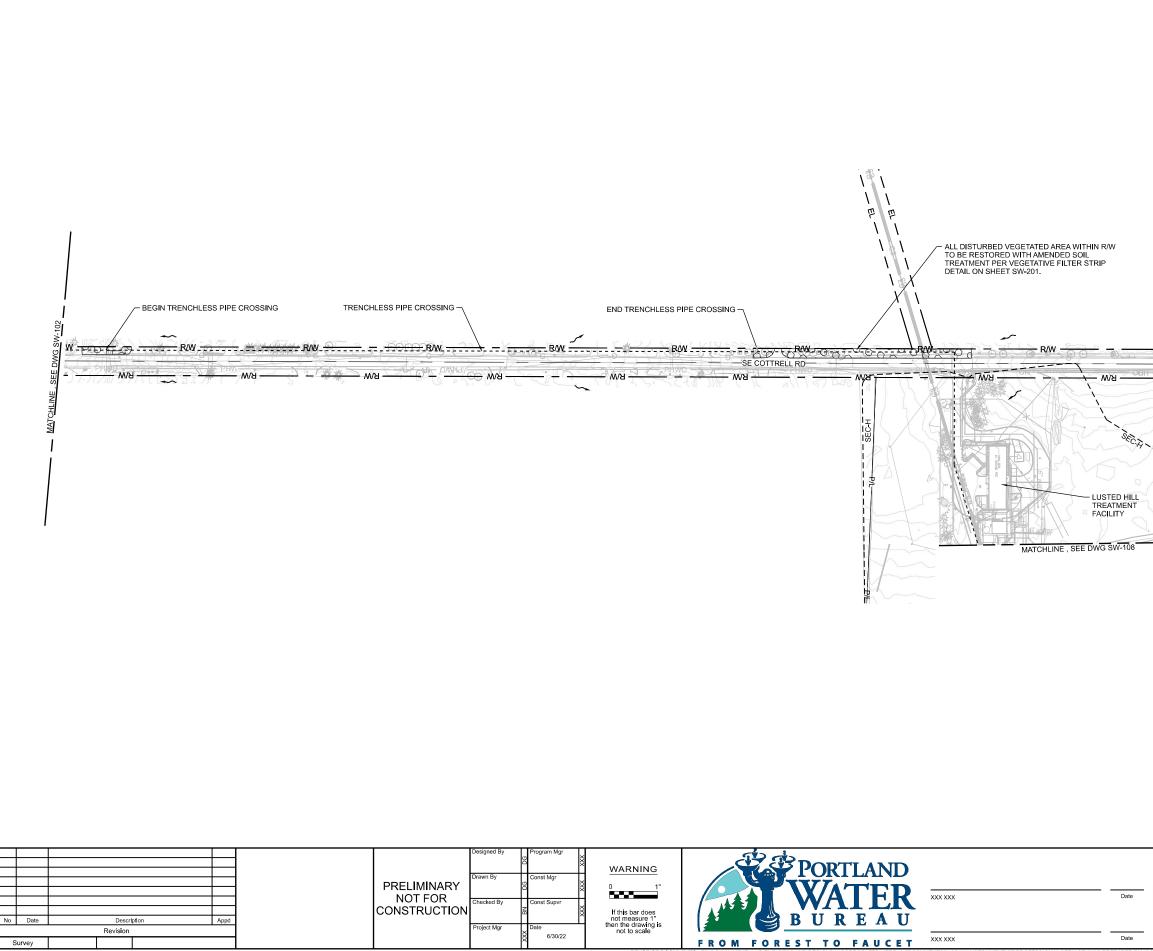

						Designed By	Program Mgr	~			
							ă ș		PORTI AND		
						Drawn By	Const Mgr	WARNING	FURILAND		
				_	PRELIMINARY	, , , , , , , , , , , , , , , , , , ,	8	0 1"			
				_			<u>ľ</u>			XXX XXX	Date
				-	CONSTRUCTION	Checked By	Const Supvr	<			
Nia	Data	 Descrip	ntion	Annd	CONSTRUCTION			f this bar does not measure 1"			
INO	Date	Revision	puon	Appd		Project Mgr	Date	If this bar does not measure 1" then the drawing is not to scale			
		Revision					8 6/30/22	not to scale		XXX XXX	Date
	Survey						lî l		FROM FOREST TO FAUCET	2007.200A	

REUSE OF DOCUMENTS: THIS DOCUMENT, AND THE IDEAS AND DESIGNS INCORPORATED HEREIN ("DOCUMENTS"), AS AN INSTRUMENT OF PROFESSIONAL SERVICE, WAS PREPARED BY JACOBS SOLEY FOR THE PURPOSE OF THIS PROJECT AND DESIGN CRITERIA. JACOBS IS RELEASED FROM ANY AND ALL LIABULTY OF ANY KIND ARISING OUT OF OR RELATING TO THE RE-USE OF THE DOCUMENTS, IN WHOLE OR IN PART, FOR ANY OTHER PROJECT OR EXTENSIONS OF THIS PROJECT.

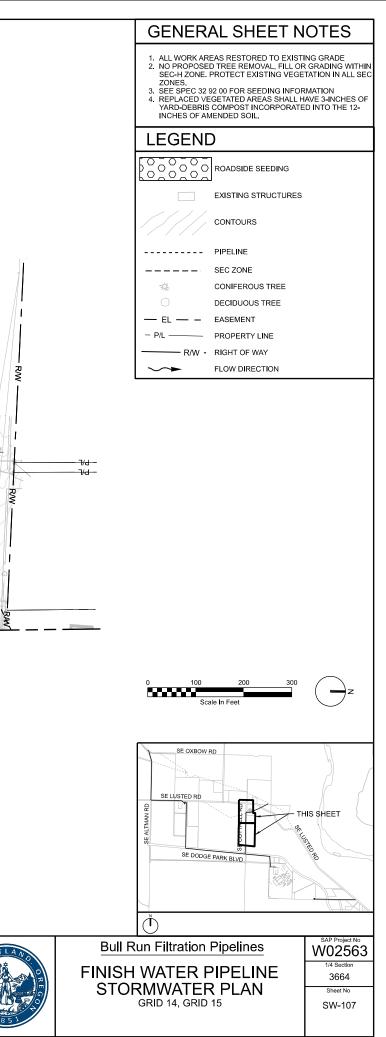


W02563_SW-104

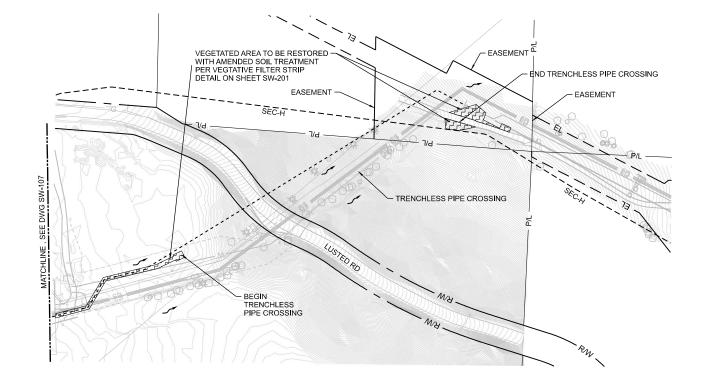




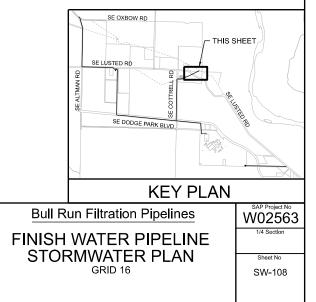
Bull Run Filtration Pipelines W02563 FINISH WATER PIPELINE 3764 STORMWATER PLAN Sheet No GRID 10, GRID 11 SW-105



THIS DOCUMENT, AND THE IDEAS AND DESIGNS INCORPORATED HEREIN ("DOCUMENTS"), AS AN INSTRUMENT OF PROFESSIONAL SERVICE, WAS PREPARED BY JACOBS SOLEY FOR THE PURPOSE OF THIS PROJECT AND DESIGN CRITERIA. JACOBS IS RELEASED FROM ANY AND ALL LIABILITY OF ANY KIND ARISING OUT OF OR RELATING TO THE RE-USE OF THE DOCUMENTS, IN WHOLE OR IN PART, FOR ANY OTHER PROJECT OR EXTENSIONS OF THIS PROJECT. REUSE OF DOCUMEN

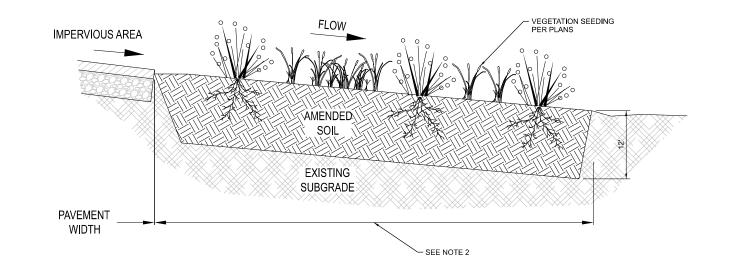

REUSE OF DOCUMENTS. THIS DOCUMENT AND THE IDEAS AND DESIGNS INCORPORATED HEREIN ("DOCUMENTS"), AS AN INSTRUMENT OF PROFESSIONAL SERVICE, WAS PREPARED BY JACOBS SOLEY FOR THE PURPOSE OF THIS PROJECT AND DESIGN CRITERIA. JACOBS IS RELEASED FROM ANY AND ALL LIABILITY OF ANY KIND ARISING OUT OF OR RELATING TO THE RE-USE OF THE DOCUMENTS, IN WHOLE OR IN PART, FOR ANY OTHER PROJECT OR EXTENSIONS OF THIS PROJECT.

_				1		Designed By	Program Mar	1		
E						Designed by	0	8		Bull Run
Ĕ				1		Drawn By	Const Mar	<u>WARNING</u>	PORTLAND	
8					PRELIMINARY	,	2 C	× <u>0 1</u> "		🚵 🛛 FINISH W
-202					NOT FOR	Checked By	Const Supvr			FINISH W
SEP					CONSTRUCTION		N B	If this bar does not measure 1"		3 0 0 1 1
5-	No Date	Description Revision	Appd			Project Mgr	× Date	then the drawing is not to scale	$\begin{array}{c} B U R E A U \\ \hline \end{array}$	/
F	Survey			1			8 6/30/22		FROM FOREST TO FAUCET XXX XXX Date	
				-				REUSE OF DOCUM	IENTS: THIS DOCUMENT, AND THE IDEAS AND DESIGNS INCORPORATED HEREIN ("DOCUMENTS"), AS AN INSTRUMENT OF PROFESSIONAL SERVICE, WAS PREPARED BY JACOBS SOLEY FOR THE PUR CRITERIA. JACOBS IS RELEASED FROM ANY AND ALL LIABILITY OF ANY KIND ARISING OUT OF OR RELATING TO THE RE-USE OF THE DOCUMENTS, IN WHOLE OR IN PART, FOR ANY OTHER PRO	POSE OF THIS PROJECT AND DESIGN JECT OR EXTENSIONS OF THIS PROJECT.


dan 108.

W02563_SW-

GENER	AL SHEET NOTES								
 ALL WORK AREAS RESTORED TO EXISTING GRADE NO PROPSED TREE REMOVAL, FILL OR GRADING WITHIN SEC-H ZONE. PROTECT EXISTING VEGETATION IN ALL SEC ZONES. SEE SPEC 32 92 00 FOR SEEDING INFORMATION DISPERSION AREA ADJACENT TO REPLACED IMPERVIOUS AREAS MUST BE 2 TIMES THE WIDTH OF THE IMPERVIOUS AREA DRAINING TO IT. SEE VEGEATED FILTER STRIP DETAIL ON SHEET SW-201. 									
LEGEND)								
	SEC ROADSIDE SEEDING								
	EXISTING STRUCTURES								
[]]]]	CONTOURS								
	PIPELINE								
	SEC ZONE								
茶	CONIFEROUS TREE								
0	DECIDUOUS TREE								
EL	EASEMENT								
— P/L ———	PROPERTY LINE								
	RIGHT OF WAY								
\sim	FLOW DIRECTION								



 \square

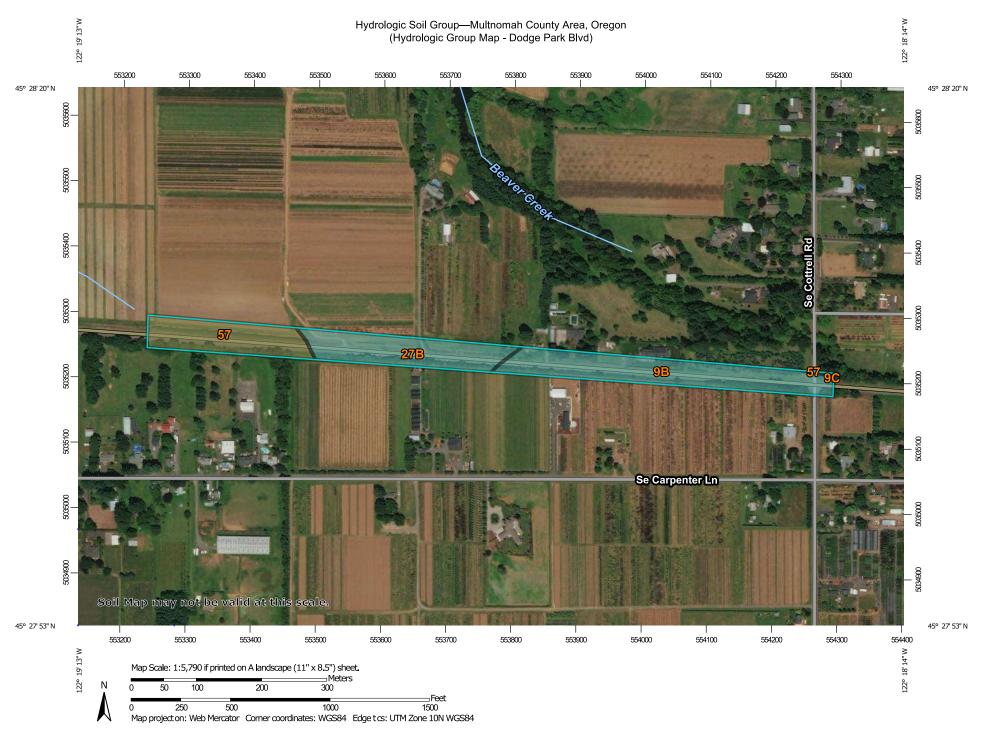
CONSTRUCTION REQUIREMENTS

DO NOT ALLOW TEMPORARY STORAGE OF CONSTRUCTION WASTE OR MATERIALS IN THE FILTER STRIP. DO NOT ALLOW VEHICULAR TRAFFIC, FOOT TRAFFIC, MATERIAL STORAGE, OR HEAVY EQUIPMENT WITHIN 10 FEET OF THE FILTER STRIP AREA AFTER SITE CLEARING AND GRADING HAVE BEEN COMPLETED, EXCEPT AS NEEDED TO EXCAVATE, GRADE, AND CONSTRUCT THE FILTER STRIP.

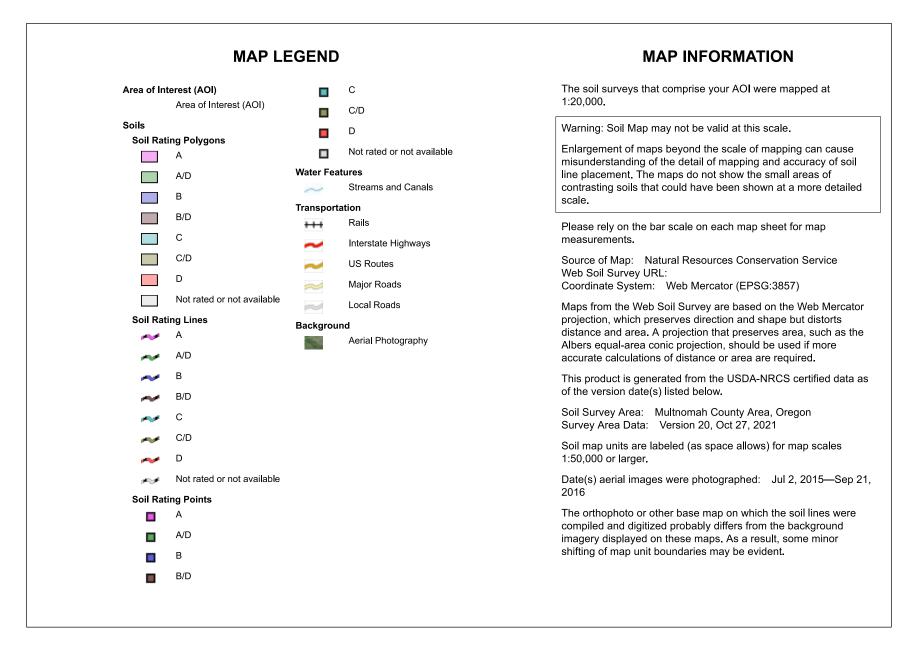
- 1. PROVIDE PROTECTION FROM ALL VEHICLE TRAFFIC, EQUIPMENT STAGING, AS WELL AS FOOT TRAFFIC FOR PROPOSED INFILTRATION AREAS PRIOR TO AND DURING CONSTRUCTION.
- MINIMUM FILTER STRIP FLOW PATH IS 5 FEET. FILTER STRIP WIDTH SHALL HAVE THE CORRESPONDING WIDTHS PER CONTRIBUTING IMPERVIOUS AREA: -2% SLOPED FILTER STRIP TO TREAT 4 FEET OF PAVEMENT FOR EVERY 1 FOOT OF FILTER STRIP
 - -5% SLOPED FILTER STRIP TO TREAT 3 FEET OF PAVEMENT FOR EVERY 1 FOOT OF FILTER STRIP
 - -10% SLOPED FILTER STRIP TO TREAT 2 FEET OF PAVEMENT FOR EVERY 1 FOOT OF FILTER STRIP
 - -15% SLOPED FILTER STRIP TO TREAT 1.5 FEET OF PAVEMENT FOR EVERY 1 FOOT OF FILTER STRIP
- 3. THE LENGTH OF FILTER STRIPS PLACED PARRALLEL TO THE ROAD MUST BE EQUAL TO THE LENGTH OF THE CONTRIBUTING IMPERVIOUS OR PAVEMENT AREA.

- 4. AMENDED SOIL: IF AREA ISN'T ALREADY VEGETATED, AMEND NATIVE SOIL BY ADDING 3 INCHES OF YARD-DEBRIS COMPOST AND BLENDING TO A DEPTH OF 12 INCHES.
- 5. VEGETATION: THE FILTER STRIP MUST HAVE AT LEAST 90% COVERAGE BY NATIVE VEGETATION, GRASS OR TREE CANOPY.

VEGETATED FILTER STRIP


_		
31	25-300)
	20-000)

REUSE OF DOCUMENTS: THIS DOCUMENT, AND THE IDEAS AND DESIGNS INCORPORATED HEREIN ("DOCUMENTS"), AS AN INSTRUMENT OF PROFESSIONAL SERVICE, WAS PREPARED BY JACOBS SOLEY FOR THE PURPOSE OF THIS PROJECT AND DESIGN CRITERIA. JACOBS IS RELEASED FROM ANY AND ALL LIABILITY OF ANY KIND ARISING OUT OF OR RELATING TO THE RE-USE OF THE DOCUMENTS, IN WHOLE OR IN PART, FOR ANY OTHER PROJECT OR EXTENSIONS OF THIS PROJECT.


Appendix C: References

NCRS Soils Web Maps TR-55 Table 2-2a Runoff Curve Numbers for Urban Areas ODFW Fish Habitat and Barriers

USDA Natural Resources

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
9B	Cazadero silty clay loam, 0 to 8 percent slopes	С	4.9	43.4%
9C	Cazadero silty clay loam, 8 to 15 percent slopes	С	0.0	0.1%
27B	Mershon silt loam, 0 to 8 percent slopes	С	3.4	30.2%
57	Wollent silt loam	C/D	3.0	26.4%
Totals for Area of Interest		11.2	100.0%	

Description

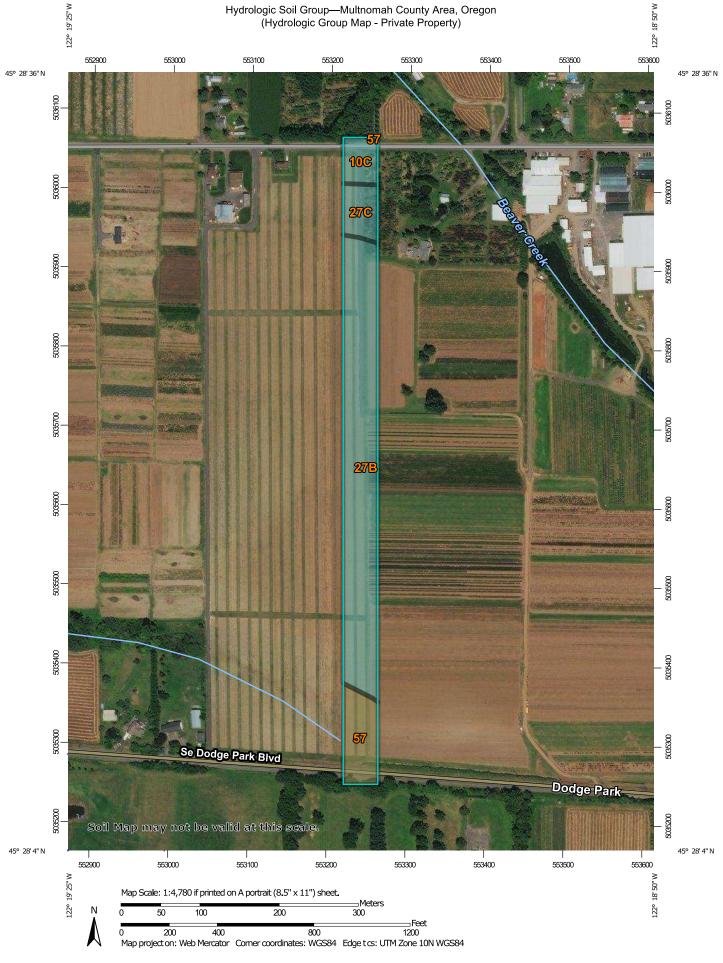
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

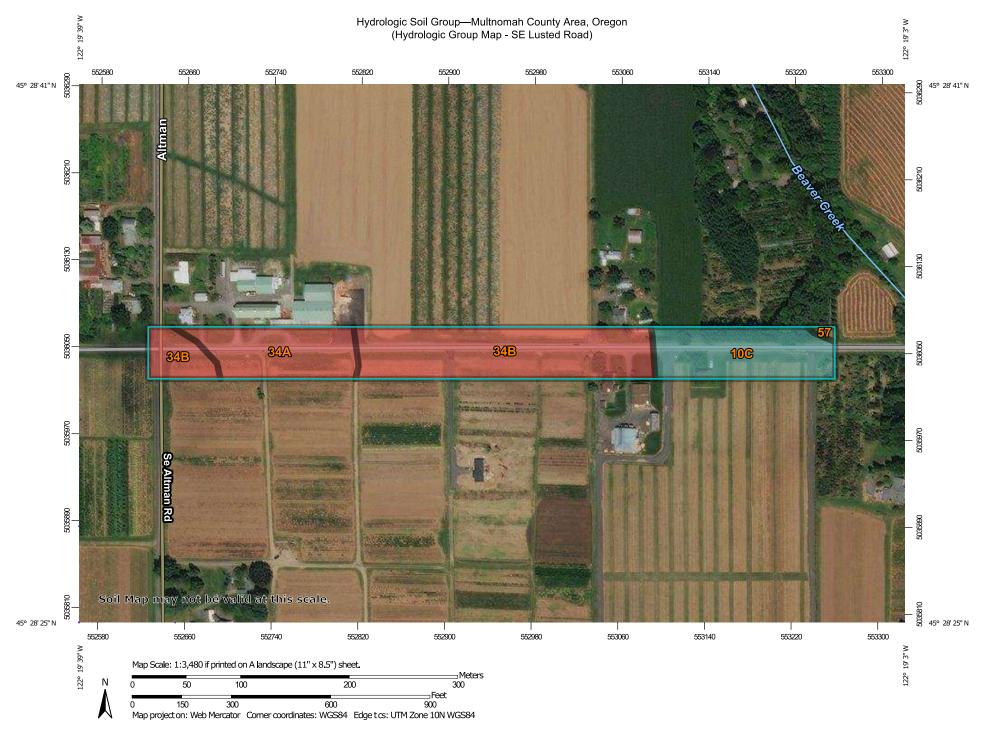
Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
10C	Cornelius silt loam, 8 to 15 percent slopes	С	0.6	7.2%
27B	Mershon silt loam, 0 to 8 percent slopes	С	6.2	70.0%
27C	Mershon silt loam, 8 to 15 percent slopes	С	0.7	8.4%
57	Wollent silt loam	C/D	1.3	14.4%
Totals for Area of Interest		8.9	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:


Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

USDA Natural Resources

Conservation Service

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
10C	Cornelius silt loam, 8 to 15 percent slopes	С	1.9	25.8%
34A	Powell silt loam, 0 to 3 percent slopes	D	1.7	22.1%
34B	Powell silt loam, 3 to 8 percent slopes	D	3.9	51.4%
57	Wollent silt loam	C/D	0.1	0.7%
Totals for Area of Interest		7.5	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:


Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

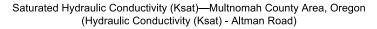
National Cooperative Soil Survey

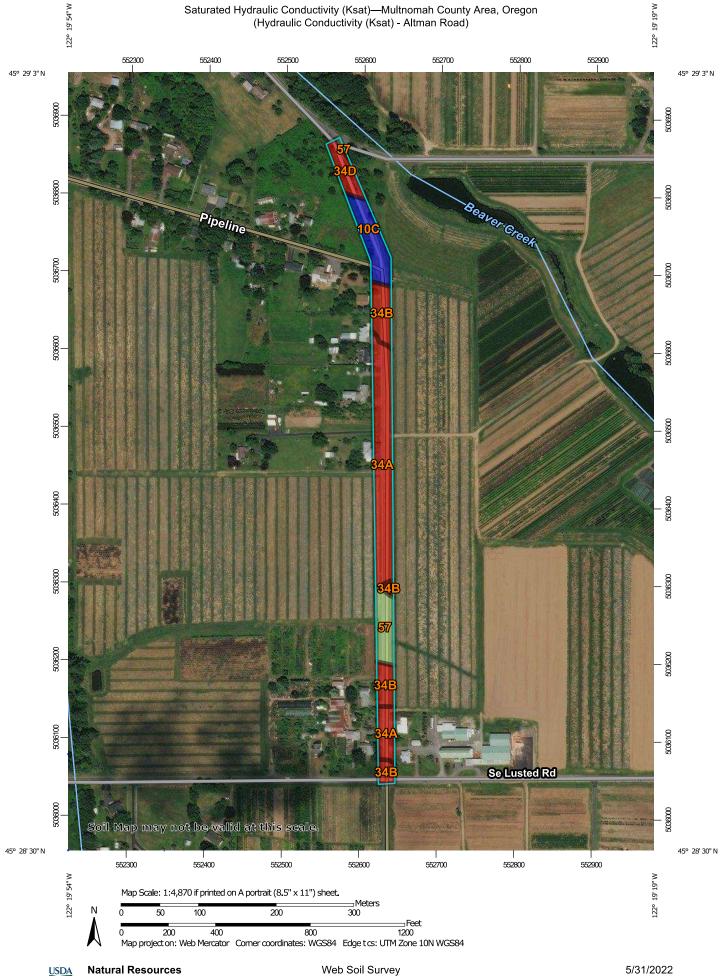
Conservation Service

Saturated Hydraulic Conductivity (Ksat)

Map unit symbol	Map unit name	Rating (micrometers	Acres in AOI	Percent of AOI
		per second)		
10C	Cornelius silt loam, 8 to 15 percent slopes	4.4908	0.4	6.7%
27В	Mershon silt loam, 0 to 8 percent slopes	3.3934	4.7	70.6%
27C	Mershon silt loam, 8 to 15 percent slopes	3.3934	0.6	8.4%
57	Wollent silt loam	3.0000	1.0	14.3%
Totals for Area of Interest			6.7	100.0%

Description


Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity is considered in the design of soil drainage systems and septic tank absorption fields.


For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

The numeric Ksat values have been grouped according to standard Ksat class limits.

Rating Options

Units of Measure: micrometers per second Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Fastest Interpret Nulls as Zero: No Layer Options (Horizon Aggregation Method): Depth Range (Weighted Average) Top Depth: 12 Bottom Depth: 60 Units of Measure: Inches

National Cooperative Soil Survey

Conservation Service

5/31/2022 Page 1 of 4

Saturated Hydraulic Conductivity (Ksat)

Map unit symbol	Map unit name	Rating (micrometers per second)	Acres in AOI	Percent of AOI
10C	Cornelius silt loam, 8 to 15 percent slopes	4.4908	0.7	14.9%
34A	Powell silt loam, 0 to 3 percent slopes	1.6394	2.3	46.0%
34B	Powell silt loam, 3 to 8 percent slopes	1.6394	1.0	20.1%
34D	Powell silt loam, 15 to 30 percent slopes	1.6394	0.4	7.8%
57	Wollent silt loam	3.0000	0.5	11.1%
Totals for Area of Inter	rest	1	4.9	100.0%

Description

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity is considered in the design of soil drainage systems and septic tank absorption fields.

For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

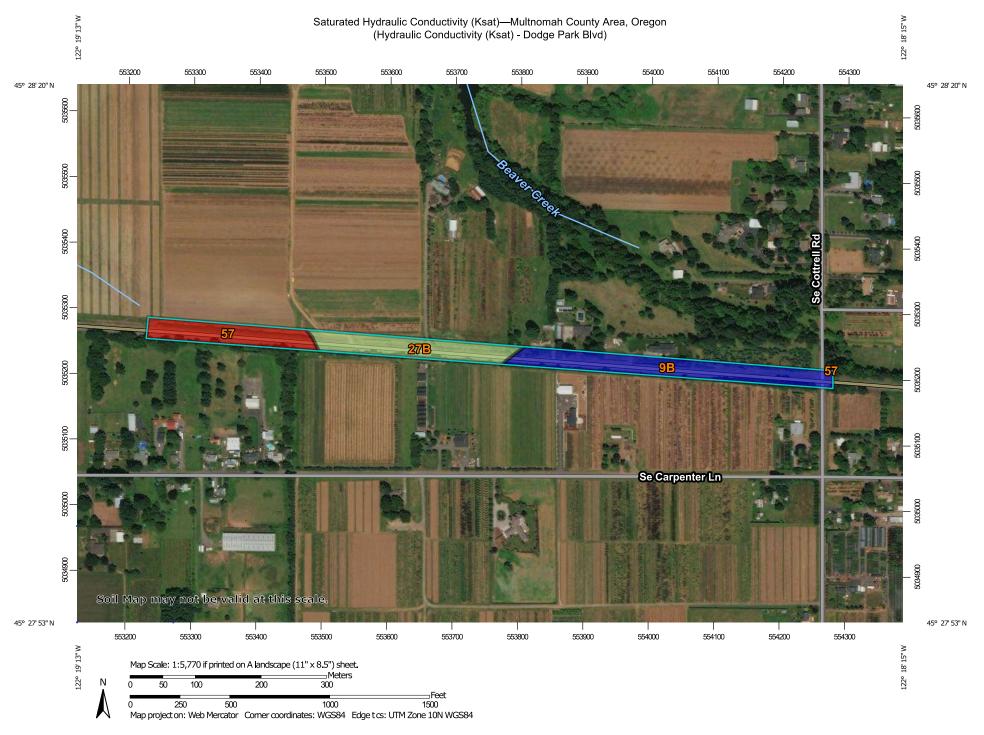
The numeric Ksat values have been grouped according to standard Ksat class limits.

Rating Options

Units of Measure: micrometers per second

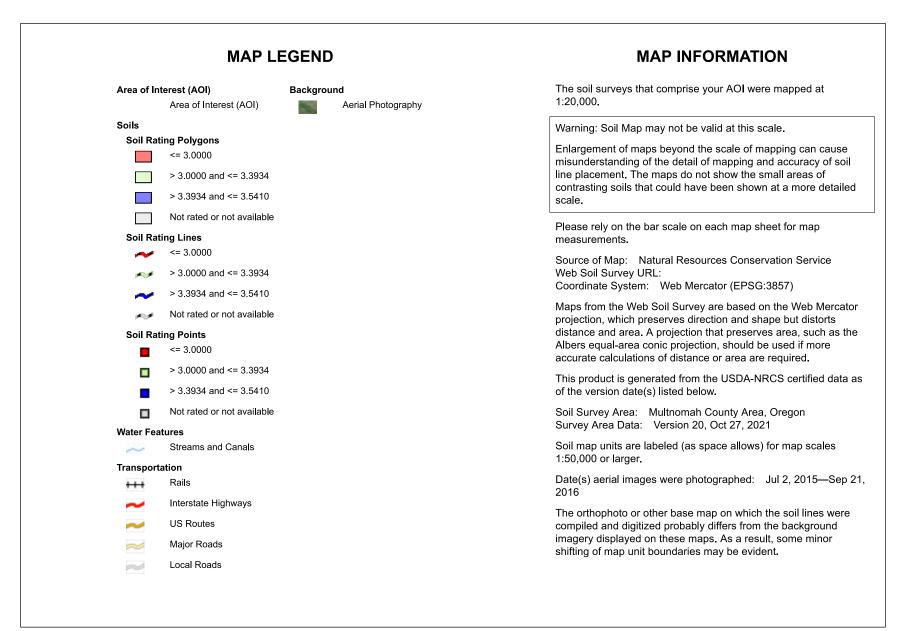
Aggregation Method: Dominant Component

Component Percent Cutoff: None Specified


Tie-break Rule: Fastest

Interpret Nulls as Zero: No

Layer Options (Horizon Aggregation Method): Depth Range (Weighted Average)


Top Depth: 12

Bottom Depth: 60

USDA Natural Resources

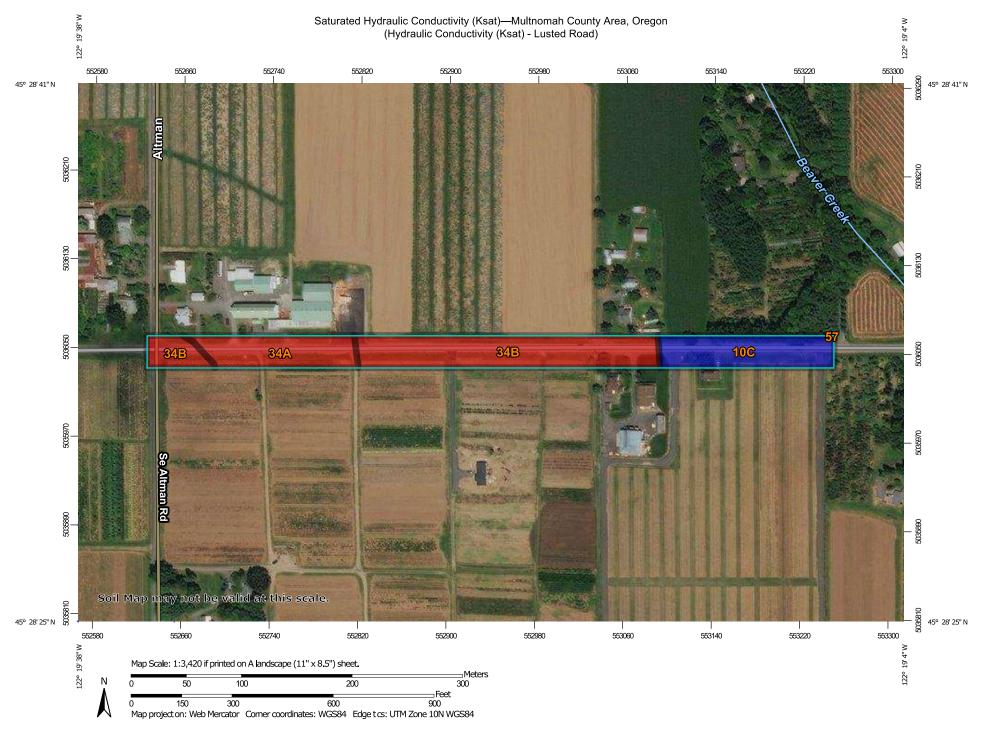
Conservation Service

Saturated Hydraulic Conductivity (Ksat)

Map unit symbol	Map unit name	Rating (micrometers per second)	Acres in AOI	Percent of AOI
9B	Cazadero silty clay loam, 0 to 8 percent slopes	3.5410	3.4	44.3%
27B	Mershon silt loam, 0 to 8 percent slopes	3.3934	2.3	29.7%
57	Wollent silt loam	3.0000	2.0	25.9%
Totals for Area of Interest			7.7	100.0%

Description

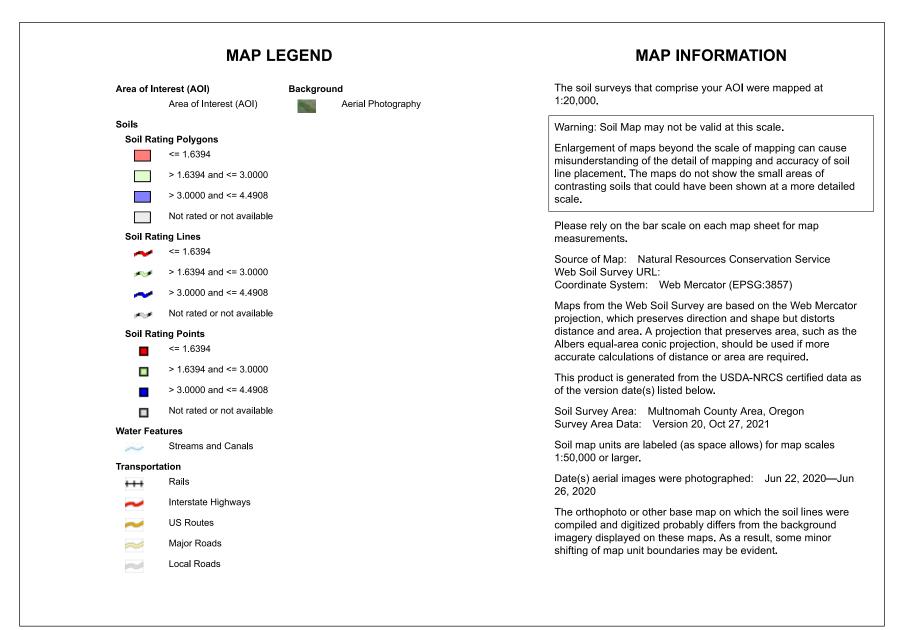
Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity is considered in the design of soil drainage systems and septic tank absorption fields.


For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

The numeric Ksat values have been grouped according to standard Ksat class limits.

Rating Options

Units of Measure: micrometers per second Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Fastest Interpret Nulls as Zero: No Layer Options (Horizon Aggregation Method): Depth Range (Weighted Average) Top Depth: 12 Bottom Depth: 60 Units of Measure: Inches


USDA

USDA Natural Resources

Conservation Service

Web Soil Survey National Cooperative Soil Survey 5/31/2022 Page 1 of 3

Saturated Hydraulic Conductivity (Ksat)

	+	1		
Map unit symbol	Map unit name	Rating (micrometers per second)	Acres in AOI	Percent of AOI
10C	Cornelius silt loam, 8 to 15 percent slopes	4.4908	1.1	25.5%
34A	Powell silt loam, 0 to 3 percent slopes	1.6394	1.0	22.5%
34B	Powell silt loam, 3 to 8 percent slopes	1.6394	2.3	52.0%
57	Wollent silt loam	3.0000	0.0	0.0%
Totals for Area of Interest		4.5	100.0%	

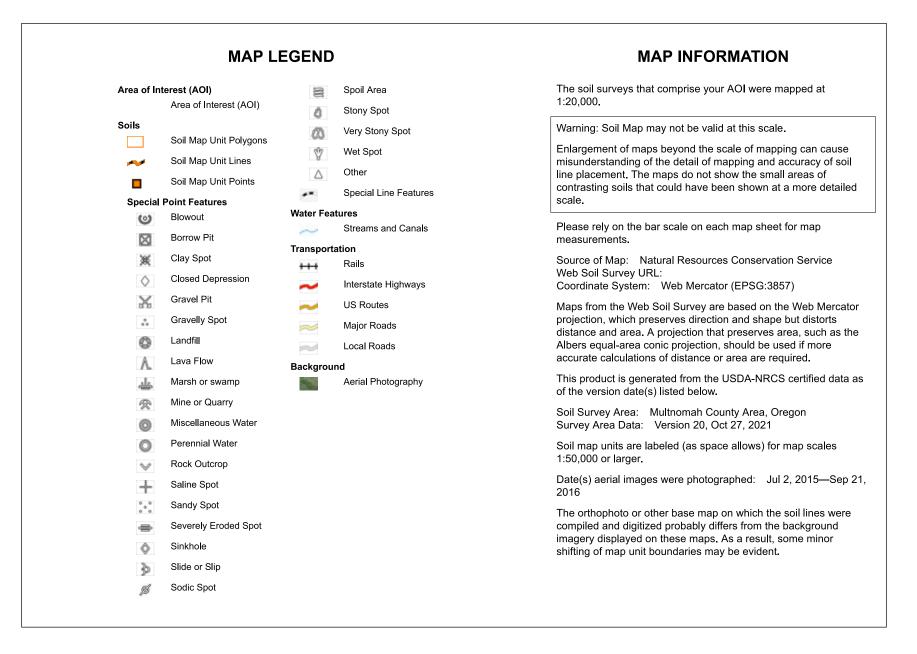
Description

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity is considered in the design of soil drainage systems and septic tank absorption fields.


For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

The numeric Ksat values have been grouped according to standard Ksat class limits.

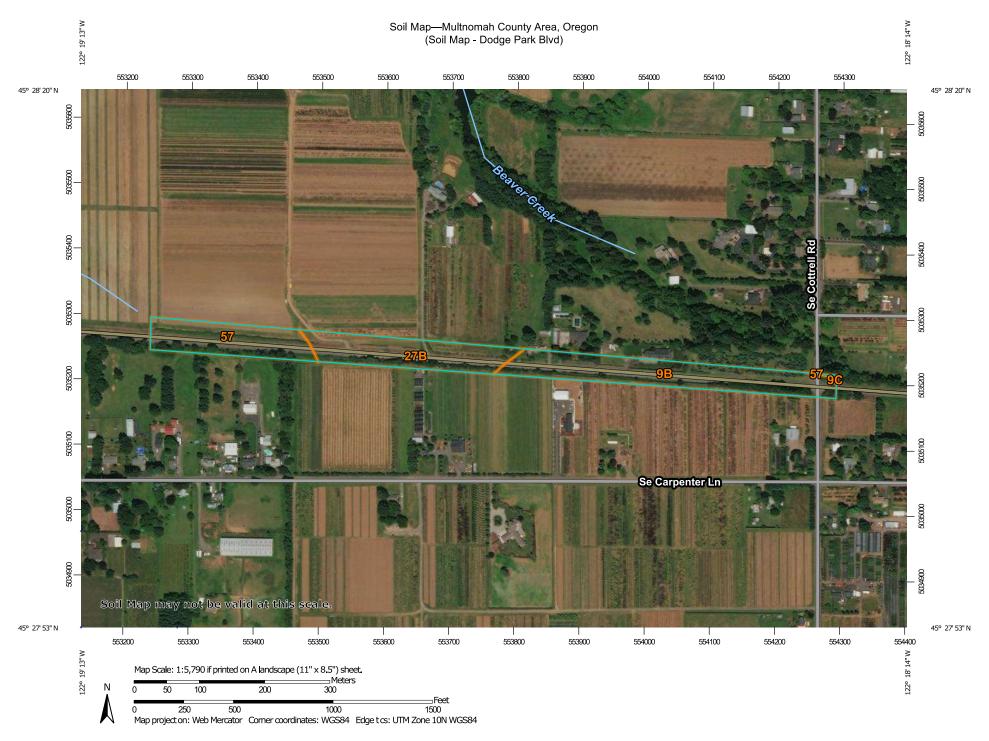
Rating Options


Units of Measure: micrometers per second Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Fastest Interpret Nulls as Zero: No Layer Options (Horizon Aggregation Method): Depth Range (Weighted Average) Top Depth: 12 Bottom Depth: 60 Units of Measure: Inches

Soil Map-Multnomah County Area, Oregon (Soil Map - SE Altman Road)

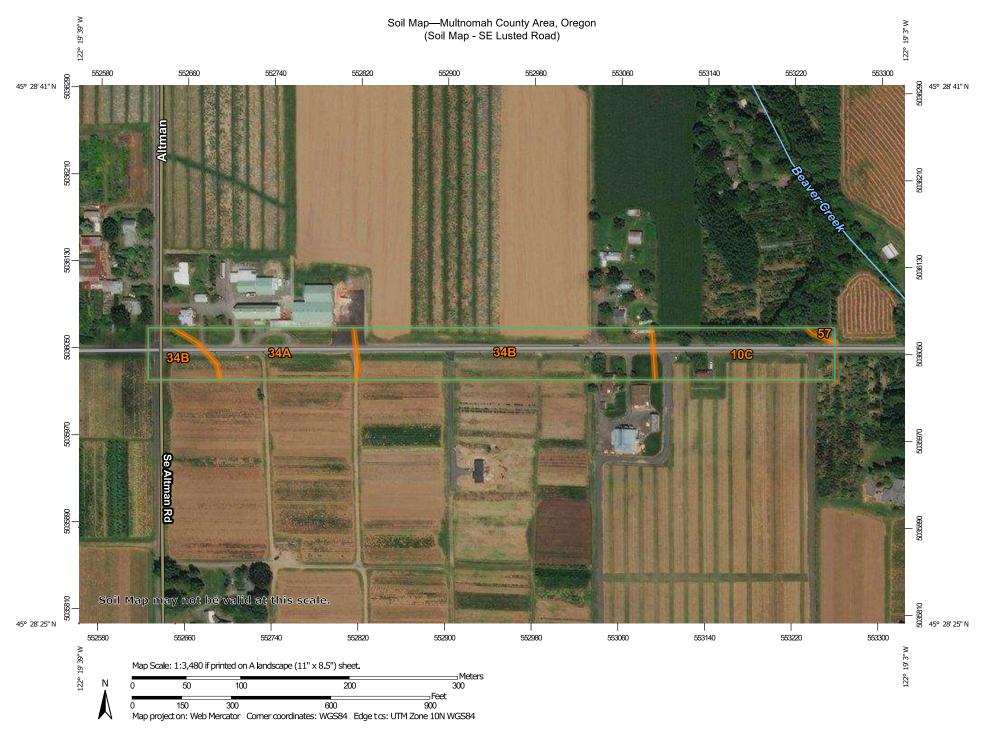
Conservation Service

Web Soil Survey National Cooperative Soil Survey



Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
10C	Cornelius silt loam, 8 to 15 percent slopes	1.1	14.8%
34A	Powell silt loam, 0 to 3 percent slopes	3.2	44.8%
34B	Powell silt loam, 3 to 8 percent slopes	1.5	20.6%
34D	Powell silt loam, 15 to 30 percent slopes	0.6	8.2%
57	Wollent silt loam	0.8	11.6%
Totals for Area of Interest		7.2	100.0%


USDA Natural Resources

Conservation Service

Map Unit Legend

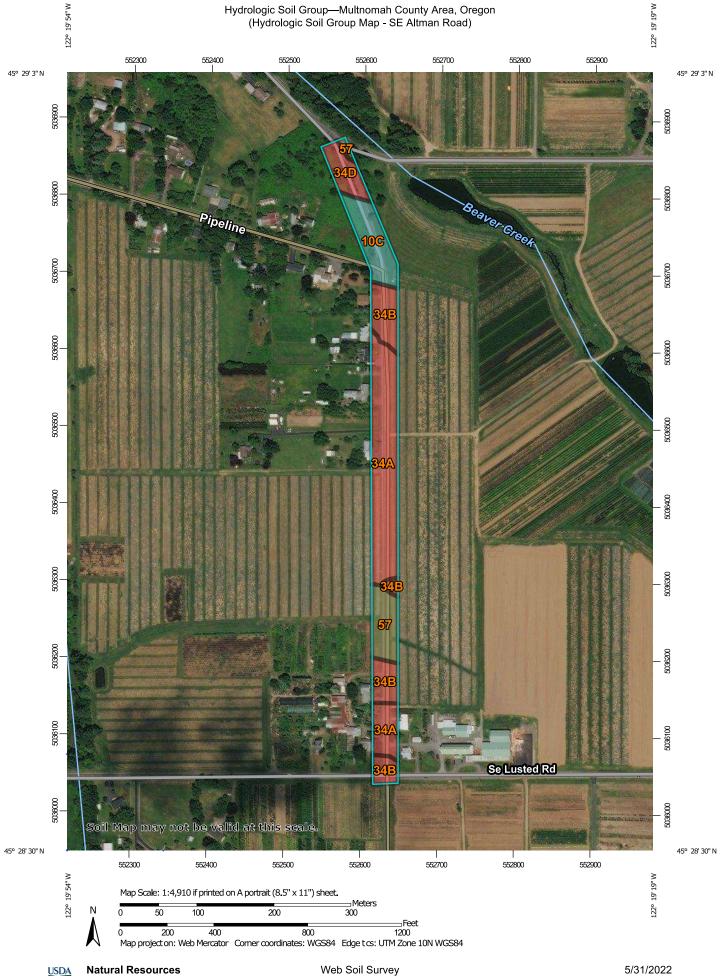
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
9В	Cazadero silty clay loam, 0 to 8 percent slopes	4.9	43.4%
9C	Cazadero silty clay loam, 8 to 15 percent slopes	0.0	0.1%
27В	Mershon silt loam, 0 to 8 percent slopes	3.4	30.2%
57	Wollent silt loam	3.0	26.4%
Totals for Area of Interest		11.2	100.0%


USDA Natural Resources

Conservation Service

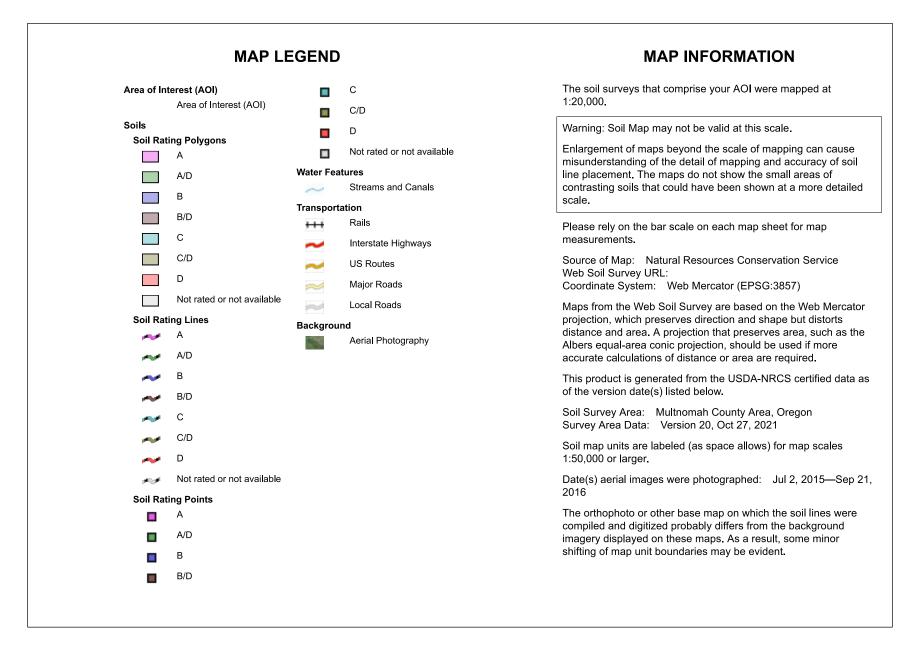
Map Unit Legend

Map Unit Symbol Map Unit Name		Acres in AOI	Percent of AOI
10C	Cornelius silt loam, 8 to 15 percent slopes	1.9	25.8%
34A	Powell silt loam, 0 to 3 percent slopes	1.7	22.1%
34B	Powell silt loam, 3 to 8 percent slopes	3.9	51.4%
57	Wollent silt loam	0.1	0.7%
Totals for Area of Interest		7.5	100.0%


Web Soil Survey National Cooperative Soil Survey

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
10C	Cornelius silt loam, 8 to 15 percent slopes	0.6	7.2%
27В	Mershon silt loam, 0 to 8 percent slopes	6.2	70.0%
27C	Mershon silt loam, 8 to 15 percent slopes	0.7	8.4%
57	Wollent silt loam	1.3	14.4%
Totals for Area of Interest		8.9	100.0%



Hydrologic Soil Group-Multnomah County Area, Oregon (Hydrologic Soil Group Map - SE Altman Road)

National Cooperative Soil Survey

Conservation Service

Hydrologic Soil Group

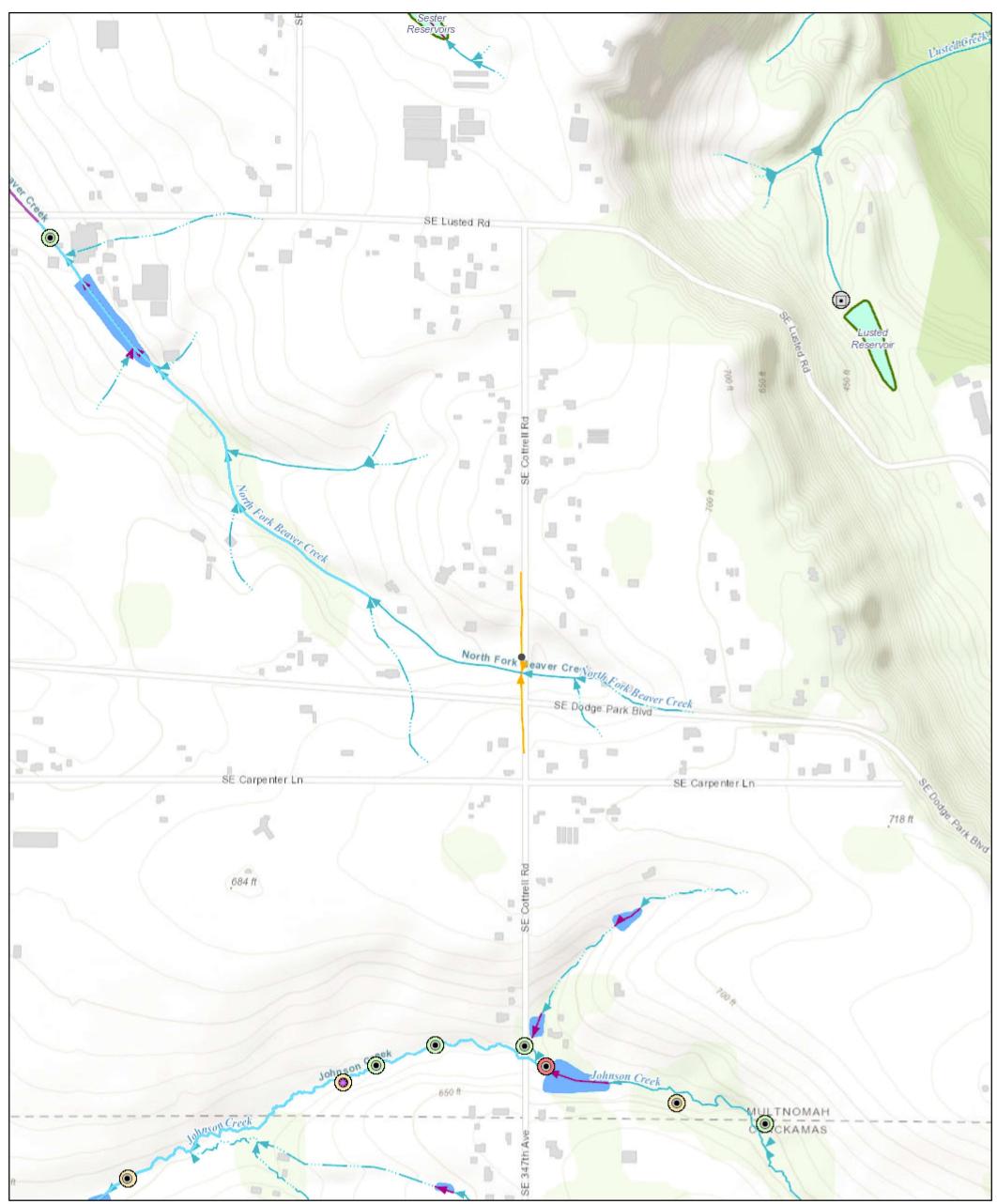
	i			
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
10C	Cornelius silt loam, 8 to 15 percent slopes	С	1.1	14.8%
34A	Powell silt loam, 0 to 3 percent slopes	D	3.2	44.8%
34B	Powell silt loam, 3 to 8 percent slopes	D	1.5	20.6%
34D	Powell silt loam, 15 to 30 percent slopes	D	0.6	8.2%
57	Wollent silt loam	C/D	0.8	11.6%
Totals for Area of Interest		7.2	100.0%	

Table 2-2a Runoff curve numbers for urban areas 1/

				umbers for	
Cover description			hydrologic	e soil group	
	Average perce	ent			
Cover type and hydrologic condition in	npervious area	a 2∕ A	В	С	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.)¾:					
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas:	••••	00	01	• •	00
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way)		98	98	98	98
Streets and roads:	••••	20	00	50	90
Paved; curbs and storm sewers (excluding					
right-of-way)		98	98	98	98
Paved; open ditches (including right-of-way)		83	98 89	98 92	93 93
Gravel (including right-of-way)		85 76	89 85	92 89	90 91
		70 72	82	89 87	91 89
Dirt (including right-of-way)	••••	12	82	01	69
Western desert urban areas:		69		05	00
Natural desert landscaping (pervious areas only) 4/	••••	63	77	85	88
Artificial desert landscaping (impervious weed barrier,					
desert shrub with 1- to 2-inch sand or gravel mulch		0.0	0.0	0.0	
and basin borders)		96	96	96	96
Urban districts:					
Commercial and business		89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)	65	77	85	90	92
1/4 acre	38	61	75	83	87
1/3 acre	30	57	72	81	86
1/2 acre	25	54	70	80	85
1 acre	20	51	68	79	84
2 acres	12	46	65	77	82
Developing urban areas					
Newly graded areas		77	86	91	04
(pervious areas only, no vegetation) ^{5/}		((80	91	94
Idle lands (CN's are determined using cover types					
similar to those in table $2-2c$).					

¹ Average runoff condition, and $I_a = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.


³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space

cover type.

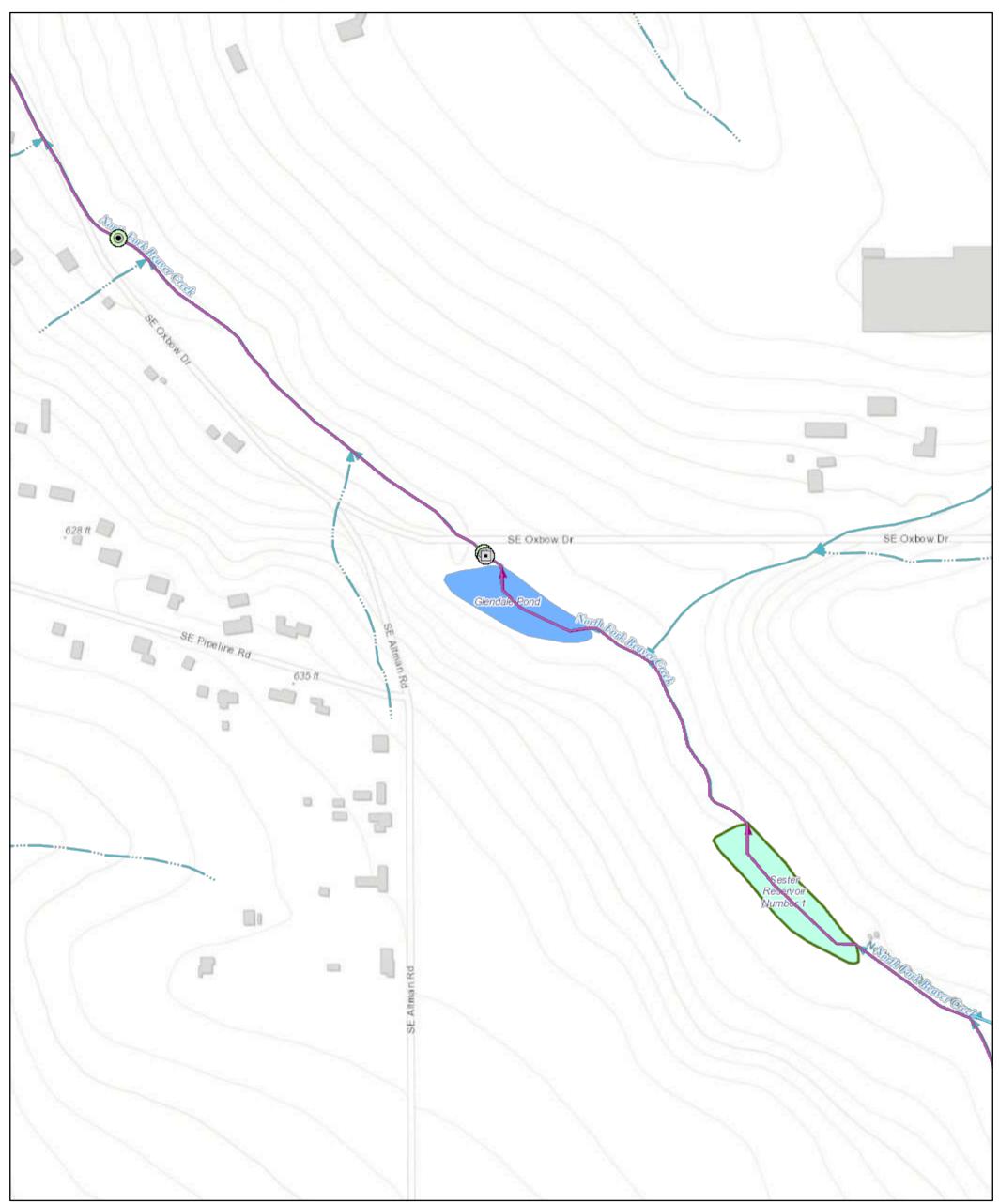
⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Oregon Fish Habitat Distribution & Barriers

8/24/2022, 11:34:53 AM

Removed or Replaced Barriers


- Culvert
- Dam
- ٥ Tide gate
- ¢ Bridge
- \leftrightarrow Ford - road stream crossing
- A Weir / sill
- 0 Other (Ford, Weir, Debris Jam, Unknown) O Unknown Passage
- ? Unknown
 - Cascades / gradient / velocity
 - Natural waterfalls
- Fish Passage Barriers by Passage Status
- \bigcirc Blocked
- O Partial Passage
- O Passable
- O Unknown Passage within Anadromy
- Fish Passage Barriers by Type
- ۲ Culvert
- Dam
- ٠ Tide gate
- 0 Bridge
- Ford road stream crossing \leftrightarrow
- 🔺 Weir / sill

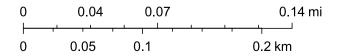
1:9,028

0	0.05	0.1	0.2 mi
\vdash		-,	··· · · · · · · · · · · · · · · · · ·
0	0.1	0.2	0.4 km

ODFW, ODFW and multiple contributing state and federal agencies, USGS TNM - National Hydrography Dataset. Data Refreshed July, 2022., ODFW, numerous state and federal natural resource agencies including tribes have

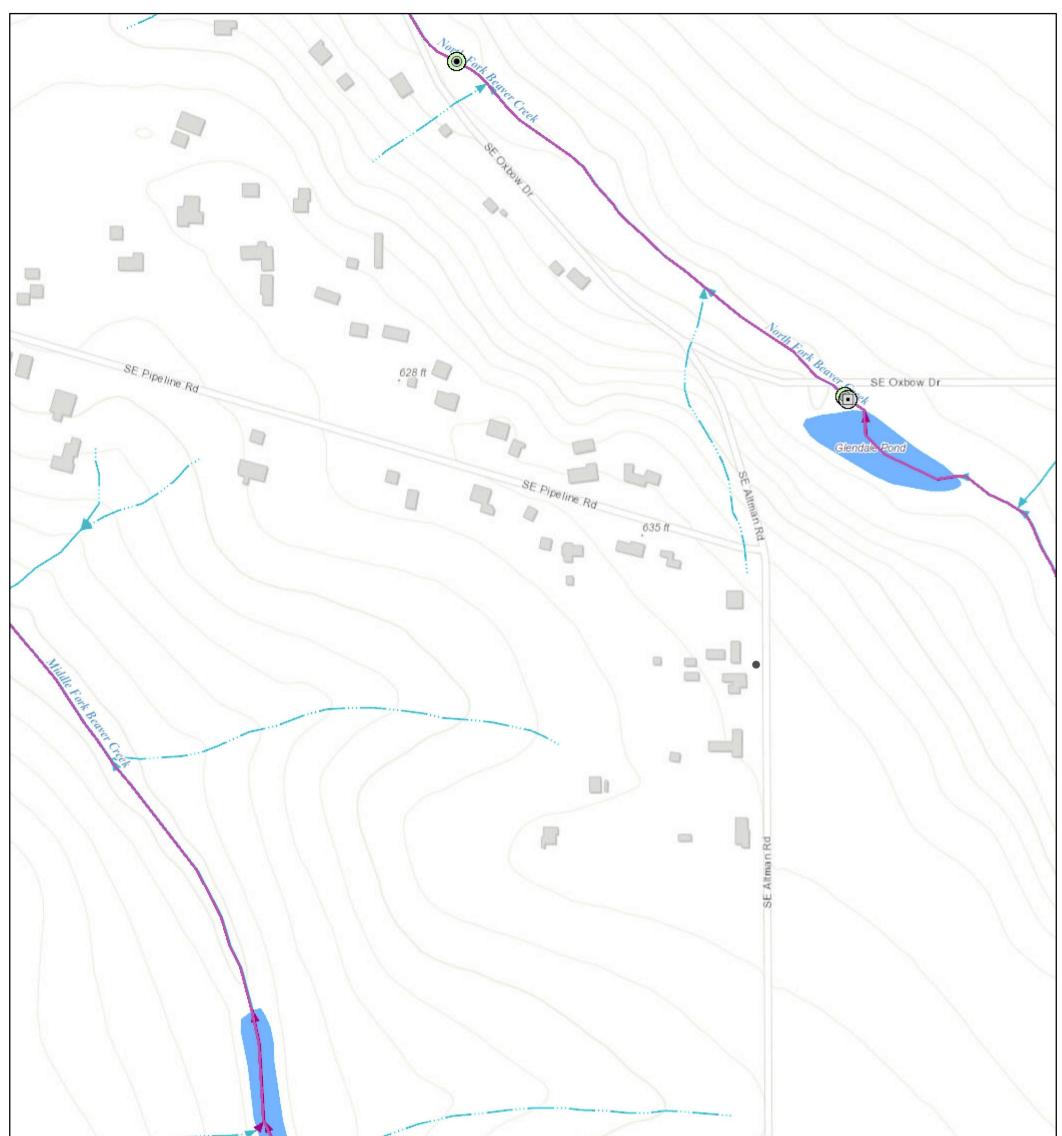
Oregon Fish Habitat Distribution & Barriers

8/24/2022, 11:47:58 AM


Removed or Replaced Barriers

- Culvert
- Dam
- ٠ Tide gate
- ¢ Bridge
- Ford road stream crossing \leftrightarrow
- A Weir / sill
- 0 Other (Ford, Weir, Debris Jam, Unknown) O Unknown Passage
- ? Unknown

đ

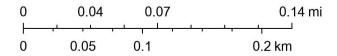

- Cascades / gradient / velocity
- Natural waterfalls •
- Fish Passage Barriers by Passage Status
- Blocked
- O Partial Passage
- O Passable
- Unknown Passage within Anadromy
- Fish Passage Barriers by Type
- Culvert
- Dam
- Tide gate
- ¢ Bridge
- Ford road stream crossing \leftrightarrow
- 🔺 Weir / sill

1:4,514

Oregon Metro, Bureau of Land Management, State of Oregon, State of Oregon DOT, State of Oregon GEO, Esri Canada, Esri, HERE, Garmin, GeoTechnologies, Inc., USGS, EPA, USDA, ODFW, ODFW and multiple

Oregon Fish Habitat Distribution & Barriers

8/26/2022, 9:41:59 AM


Removed or Replaced Barriers

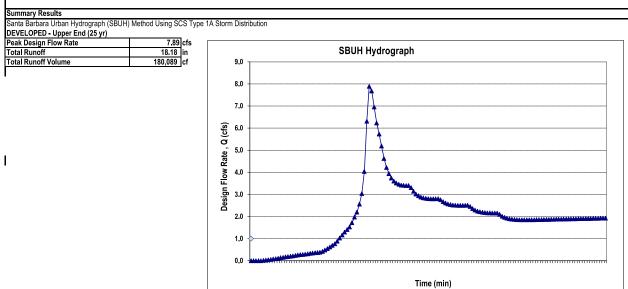
- Culvert
- . Dam
- ٥ Tide gate
- ¢ Bridge
- \leftrightarrow Ford - road stream crossing
- A Weir / sill
- 0 Other (Ford, Weir, Debris Jam, Unknown) 🔘 Unknown Passage
- ? Unknown

æ

- Cascades / gradient / velocity
- Natural waterfalls
- Fish Passage Barriers by Passage Status
- \bigcirc Blocked
- O Partial Passage
- Passable
- O Unknown Passage within Anadromy
- Fish Passage Barriers by Type
- Culvert
- Dam
- Tide gate
- 0 Bridge
- Ford road stream crossing
- 🔺 Weir / sill

1:4,514

Oregon Metro, Bureau of Land Management, State of Oregon, State of Oregon DOT, State of Oregon GEO, Esri Canada, Esri, HERE, Garmin, GeoTechnologies, Inc., USGS, EPA, USDA, ODFW, ODFW and multiple


Appendix D: Calculations

SBUH Calculations for 25-year peak discharge for Hydraulic Crossings HY-8 Calculations for Hydraulic Crossings

HYDRAULIC CROSSINGS SANTA BARBARA UNIT HYDROGRAPH METHOD

SBUH DESIGN WORKSHEET -	25-yr		POST-PR	ROJECT
				ZONE 8
PROJECT:	FPP - Bull Run			Event 24-hour precip (in ODOT Transgis
BASIN	DA 5			WQ 1.61 https://gis.odot.state.or.us/transgis/
OUTFALL:	Culvert (Unknow	n Size)		2-yr 2.40
TREATMENT FACILITY:	N/A			5-yr 2.9
FACILITY NAME:	N/A			10-year 3.4
TOTAL IMPERVIOUS AREA	118,862			25-yr 3.8
Total Drainage Area	24.37			100-yr 4.7
Parameters		Units		Comments
Total length of Flow	1720	ft		Total length of sheet flow, concentrated flow and pipe flow segments
Sheet Flow Segment				
Length	200			
Slope of hydraulic Grid Line - S _o	0.02	ft/ft		
ns - Sheet flow Manning' Effective				
roughness coeff.	0.15			table III-1.4 from 1992 Puget Sound SWMM
Travel time (sheet Flow Segment) T ₁ =				
0.42 (n _s L) ^{0.8} /((1.58*(S _o) ^{0.4})	23.0	min		[City of Portland Stormwater Management Manual 2004 page C-2]
Shallow Concentrated Flow Segment	940	4		Through Bioretention Basin to outlet
Length	0.0220		╂──┼──	[City of Portland Stormwater Management Manual 2004 page C-2]
Velocity V = 20.3282(S _o)^0.5	3.02			[City of Portland Stormwater Management Manual 2004 page C-2]
$T_2 = L/(60*V)$	5.2	min		[City of Portland Stormwater Management Manual 2004 page C-2]
Ditch Flow Segment				
Length	580		+-+	Assume sheet flows empty into inlets connected to pipes.
$T_3 = L/(60*V)$		min		Assume pipe flow velocity of 3fps
Given Area		acres	\vdash	
P _t Depth of Rainfa ll	3.80	IN	\vdash	25-yr
		<u> </u>	\vdash	^change based on IDR event values.
dt		min		Time Interval
T _c	31.4			
Routing Constant w= d _t /(2T _c +d _t)	0.137			
Pervious Area (acres)	21.64		CN	79 S = (1000/CN)-10 2.6582278 0.2*S 0.531646
Impervious Area (acres)	2.73		CN	98 S = (1000/CN)-10 0.2040816 0.2*S 0.040816
			CN	

I

[4]	1 101	[0]	141	[6]	101	(7)	101	101	[40]	1441	[40]	[40]
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
					Pervio	us Area	mpervi	ous Area				
Time Incr.	Time		Incre, Rainfall	Accumul. Rainfall (in)	Accumul. Runoff (in)	Incre. Runoff (in)	Accumul. Runoff (in)	Incre. Runoff (in)	Total Runoff (in)	Instant Flowrate (cfs)	Design Flowrate (cfs)	Instant Vol. (ft ³
1	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	10	0.004	0.015	0.015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	20	0.004	0.015	0.030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	30	0.004	0.015	0.046	0.000	0.000	0.000	0.000	0.000	0.002	0.000	1.085
5	40	0.004	0.015	0.061	0.000	0.000	0.002	0.002	0.002	0.028	0.004	16.569
6	50	0.004	0.015	0.076	0.000	0.000	0.005	0.003	0.003	0.056	0.015	33.593
7	60	0.004	0.015	0.091	0.000	0.000	0.010	0.005	0.005	0.079	0.029	47.566

HYDRAULIC CROSSINGS SANTA BARBARA UNIT HYDROGRAPH METHOD

Image: Bartelly and the second seco	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
math11 <td< th=""><th></th><th></th><th></th><th></th><th></th><th>Perviou</th><th></th><th>Imperv</th><th>ious Area</th><th></th><th></th><th></th><th></th></td<>						Perviou		Imperv	ious Area				
math11 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>													
InternetInternetNorth ResNorth Res<				Incre.						Total	Instant		
8 00 0.04 0.07 0.00	Time Incr.											Design Flowrate (cfs)	Instant Vol. (ft ³)
11 06 0.64 0.15 0.17 0.00 0.0	8	70	0.004	0.015	0.106	0.000	0.000	0.016	0.006	0.006	0.099	0.046	59.177
11000.6460.1150.5220.2000.2050.4080.4010.2040.4040.40413.31814140.4050.4140.4180.4140.4110													
13 130 0.050 9.070 0.081 0.010 0.083 0.011 0.013 0.293 0.011 0.293 0.011 0.293 0.011 0.293 0.011 0.293 0.011 0.293 0.011 0.293 0.293 0.011 0.293 0.293 0.203 0.293 0.203 0.293 0.203 0.293 0.223 0.20	11	100	0.004	0.015		0.000	0.000	0.039	0.009		0.140	0.094	84.273
161300.880.090.2810.000.0100.0140.0140.0241.0241.0161.038171300.0150.0140.0140.0241.0201.0121.0131.014180.0180.0240.0200.0180.0140.0140.0241.0201.0121.014180.0180.0280.0200.0180.028													
161600.080.070.2820.0800.0000.0140.1140.1140.2140.71317.33417100.0350.0150.													
17 161 0.050 0.238 0.000 0.016 0.01			0.005	0.019	0.228	0.000	0.000	0.090	0.014	0.014	0.224	0.173	134.384
18 107 0.00 0.232 0.232 0.000 0.000 0.016 0.146													
180 0.00 0.000 0.000 0.178 0.199 0.191 0.216 0.229 118.567 21 0.000 0.000 0.012 0.019 0.191 0.211 0.218 0.228 1228 1228 22 0.000 0.000 0.000 0.012 0.019 0.018 0.228													
12 120 0.06 0.023 0.287 0.000 0.216 0.196 0.196 0.214 0.224 12.857 23 226 0.060 0.023 0.020 0.023 0.020 0.225 0.236 0.238													
22 21 0.06 0.02 0.016 0.020 0.212 0.019 0.212 0.286 192.572 24 220 0.017 0.027 0.448 0.000 0.238 0.023 0.338 0.333 223.518 25 240 0.017 0.027 0.548 0.000 0.228 0.024 0.038 0.331 223.518 26 0.017 0.027 0.548 0.000 0.238 0.024 0.024 0.491 0.312 228.211 28 0.017 0.027 0.558 0.010 0.000 0.328 0.024 0.027 0.448 0.328 0.024 286.48 29 0.017 0.027 0.558 0.018 0.028 0.027 0.444 0.358 0.424 285.648 31 30 0.028 0.038 0.038 0.044 414.541 414.541 23 30 0.038 0.038 0.038 0.038 0.042 0.048													
24 23 0.07 0.027 0.456 0.00 0.256 0.023 0.028 0.338 0.333 225.781 24 240 0.07 0.027 0.458 0.006 0.000 0.322 0.024 0.338 0.348 0.338 0.348 0.332 226.411 27 280 0.07 0.027 0.358 0.001 0.320 0.024 0.348 0.034 0.338 0.342 226.441 38 290 0.037 0.037 0.038 0.031 0.010 0.010 0.028 0.024 0.644 356.46 31 290 0.038 0.039 0.622 0.628 0.624 0.644 414.41 32 0.036 0.039 0.622 0.626 0.038 0.037 0.636 0.627 0.628 0.622 0.644 414.43 33 330 0.038 0.039 0.628 0.632 0.628 0.621 0.631 0.628 0.628<													
25 240 0.07 0.027 0.043 0.008 0.000 0.027 0.024 0.038 0.033 235.78 27 280 0.07 0.027 0.038 0.000 0.000 0.028 0.024 0.037 0.042 233.211 28 0.07 0.027 0.038 0.000 0.030 0.024 0.027 0.044 0.017 234.431 28 0.07 0.027 0.028 0.007 0.027 0.024 0.027 0.044 241.411 23 30 0.068 0.038 0.049 0.028 0.047 0.711 0.051 40.23 33 230 0.068 0.308 0.044 0.047 0.028 0.062 0.022 0.023 0.047 0.071 0.051 0.072 60.64 0.042 0.484 0.041 0.44 0.047 0.071 0.051 0.072 0.052 0.027 0.053 0.072 0.056 0.052 0.057 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
16 20 0.07 0.02 0.08 0.000 0.020 0.024 0.024 0.023 0.024 <td></td>													
28 270 0.077 0.027 0.562 0.000 0.030 0.236 0.024 0.027 0.424 0.048 246.631 30 280 0.080 0.390 0.632 0.030 0.021 0.445 0.028 0.486 0.424 485.6 0.444 411.431 31 300 0.080 0.390 0.648 0.015 0.020 0.481 0.022 0.424 0.022 0.424 0.022 0.424 462.343 33 300 0.030 0.484 0.010 0.020 0.027 0.424 0.423 0.424 0.022 0.023 0.024 0.024 0.024 0.026 0.027 0.024 0.024 0.026 0.027 0.014 1.483 1.													
28 28 0.007 0.027 0.024 0.027 0.024 0.027 0.044 0.038 0.288 0.244 0.038 0.288 0.244 0.038 0.288 0.244 0.038 0.288 0.044 0.414 0.044 0.045 0.046 0.028 0.047 0.777 0.551 4442.343 33 300 0.008 0.038 0.048 0.028 0.042 0.052 0.057 0.551 4452.343 34 0.330 0.048 0.028 0.047 0.077 0.551 4452.343 34 0.030 0.031 0.017 0.038													
10 200 0.000 0.030 0.281 0.028 0.024 0.058 0.044 356.48 31 300 0.000 0.030 0.644 0.000 0.028 0.047 0.028 0.047 0.053 0.644 0.028 0.047 0.028 0.632 0.632 0.653 0.644 0.028 0.047 0.028 0.047 0.028 0.641 0.048 0.048 0.028 0.047 0.052 0.652 0.652 0.652 0.652 0.652 0.652 0.652 0.652 0.653 0.651 0.653 0.655 0.655 0.655 0.655 0.655 0.655 0.655 0.655 0.655 0.655 0.655 0.657 0.675 0.676 0.676 0.676 0.676 0.676 0.676 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675													
31 33<	30	290	0.008	0.030	0.593	0.001	0.001	0.403	0.028	0.036	0.598	0.424	358.648
33 32 0.000 0.030 0.448 0.029 0.042 0.642 0.642 0.642 0.642 0.644 0.644 34 330 0.000 0.033 0.744 0.071 0.012 0.045 0.646 0.645 0.646 0.645 0.646 0.645 0.646 0.645 0.646 0.645 0.646 0.645 0.646 0.645 0.646 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.646 0.645 <th0.645< th=""></th0.645<>													
34 330 0.008 0.009 0.712 0.003 0.544 0.022 0.056 0.061 0.072 0568 9818 35 340 0.010 0.038 0.773 0.022 0.076 0.648 0.088 1.344 0.085 8112.27 37 360 0.010 0.038 0.828 0.026 0.038 1.034 1.0328 848.732 39 380 0.010 0.038 0.837 0.033 0.010 0.138 1.268 1.146 1.468 944.8555 40 380 0.010 0.038 0.033 0.010 0.076 0.013 1.141 1.747 1.529 1.125.742 41 400 0.011 0.033 0.010 0.036 0.016 0.036 0.016 0.016 0.036 0.016 0.016 0.026 0.016 0.016 0.026 0.016 0.016 0.026 0.016 0.016 0.016 0.016 0.016 0.016													
38 390 0.010 0.038 0.022 0.006 0.036 0.036 1.044 0.085 1.142 37 390 0.010 0.038 0.026 0.007 0.616 0.036 1.021 1.633 1.268 1.002.961 39 380 0.010 0.038 0.857 0.036 0.010 1.762 1.146 1.686.969 41 400 0.010 0.038 0.935 0.014 0.015 0.037 0.114 1.767 1.529 1.125.72 1.245 1.252.72 1.271 154.8472 43 420 0.013 0.044 0.017 0.048 0.165 2.275 1.271 157.542 44 430 0.013 0.044 0.017 0.028 1.492 0.028 4.21 3.400 2.265.200 1.771 0.253 4.161 2.653 2.968.449 46 470 0.054 0.52 1.492 0.046 0.372 2.661 2.655	34	330	0.008	0.030	0.714	0.012	0.003	0.517	0.029	0.056	0.932	0.697	558.949
37 38 370 0.038 0.877 0.616 0.039 0.066 1.475 1.182 B48.585 39 380 0.010 0.038 0.887 0.044 0.006 0.655 0.037 0.102 1.883 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.181 1.181 1.181 1.181 1.181 1.181 1.181 1.181 1.181 1.181 1.181 1.181 1.181 0.101 0.161 0.181 0.161 0.181 0.161 0.181 0.172 0.441 0.172 0.441 1.121 0.101 0.052 1.142 0.172 0.262 4.181 2.263 2.268 4.181 2.363 2.268 4.181 2.363 2.268 4.181 2.463 2.271 1.432 0.471 0.261 4.181 2.463 2.571 1.714 0.441 4.343 5.314													
38 38 0.010 0.038 0.037 0.037 0.102 1.683 1.782 1.464 1006.961 40 0.001 0.038 0.037 0.014 1.782 1.464 1052 0.015 1.782 1.464 1052 0.015 0.027 0.014 1.875 1.721 1.444.872 42 400 0.113 0.449 1.127 0.077 0.014 0.416 0.155 0.721 1544.872 44 400 0.113 0.449 1.127 0.071 0.569 0.048 0.165 2.721 1545 256 446 400 0.139 0.024 0.677 0.028 4.421 3.404 256 256 404 2573 1.517 6.315 590 403 2573 1.517 6.315 590 403 4022 4.431 3.404 256 540 403 2574 531 540 531 543 543 544 541 54													
40 300 0.010 0.038 0.033 0.039 0.078 0.037 0.148 1.782 1.146 1068.568 41 400 0.011 0.044 1.072 0.041 0.015 0.037 0.141 1.875 1.523 1.121 1.121 0.016 0.016 0.016 0.016 0.016 0.016 0.0175 0.028 1.421 1.272 1.527 1.533 2.2661 2.271 1.975 1.533 2.2661 2.200 1.762, 3.443 2.2661 2.201 1.762, 3.443 2.2661 2.201 1.762, 3.443 2.2671 2.373 2.414 2.575 0.444 0.0164 0.275 1.562 0.025 1.142 0.677 0.288 4.221 3.341 4.353 4.443 5.375 4.443 5.375 4.443 5.375 4.441 5.375 4.442 5.375 4.443 5.375 4.443 5.375 4.443 5.375 4.443 5.375 4.444 4.305 4.344 4.345													
41 400 0.010 0.083 0.073 0.014 1.876 1.529 1125.72 42 400 0.013 0.049 1.022 0.076 0.014 0.816 2.757 1.721 154.8472 44 430 0.013 0.049 1.127 0.077 0.016 0.080 0.046 0.176 2.861 2.200 176.764 44 440 0.018 0.688 1.128 0.024 0.975 0.067 0.233 4.181 2.863 2.565.490 47 460 0.018 0.688 1.237 0.022 0.441 0.277 0.542 8.857 4.433 4.401 2.563 4.431 3.404 2.563 4.431 3.441 2.563 4.431 3.441 2.561 4.522 2.571 5.313 7.878 3.564.755 50 400 0.131 0.498 1.323 0.0423 1.643 0.334 1.638 0.449 2.261 3.571 5.571													
44 420 0.013 0.049 1.072 0.016 0.068 0.048 0.173 2.861 2.261 2.200 1716.764 45 440 0.018 0.068 1.189 0.130 0.024 0.975 0.067 0.253 4.181 2.563 2268.449 46 450 0.018 0.026 1.562 0.067 0.283 4.421 3.040 255.550 47 400 0.054 1.537 0.020 1.561 0.615 9.022 1.561 0.515 9.022 1.561 0.555 5.515 7.800 5564.755 50 400 0.018 0.049 1.513 0.417 0.556 0.518 0.421 5.513 7.870 388.033 51 500 0.013 0.049 1.513 0.417 0.026 4.331 6.523 2.257.633 2.267.633 2.267.633 2.267.633 2.267.633 2.267.633 2.267.633 2.267.633 2.267.633 2.267.633													
44 450 0.013 0.048 1.121 0.107 0.016 0.090 0.047 0.233 2.200 1176764 45 440 0.018 0.068 1.288 0.156 0.025 1.042 0.067 0.238 4.411 2.043 3.040 2855.5 4.043 5.737.141 46 400 0.024 0.235 1.028 0.025 1.017 0.542 8.255 4.043 5.737.141 48 470 0.024 1.282 0.035 1.742 0.101 0.510 8.425 7.890 5604.775 50 460 0.113 0.444 1.027 1.288 0.049 0.260 4.231 6.234 22191219 51 500 0.013 0.044 1.881 0.044 0.260 4.231 6.534 22191219 53 500 0.013 0.044 1.642 0.013 0.044 0.261 4.237 505538 54 600													
45 440 0.016 0.066 1.189 0.156 0.027 0.067 0.283 4.411 2.563 2268.449 46 460 0.034 0.129 1.387 0.208 0.052 1.116 0.127 0.542 8.565 6.403 5571 641 48 470 0.055 1.582 0.322 0.044 1.371 0.018 0.557 6.55 6.403 5571 640 0.018 0.557 7.876 548.003 51 500 0.013 0.049 1.851 0.441 0.027 1.589 0.040 0.260 4.231 5.731 2262.157 53 520 0.013 0.049 1.811 0.4471 0.027 1.589 0.040 0.260 4.337 5.731 2262.157 54 550 0.040 0.034 1.914 0.4471 0.027 1.758 0.044 0.314 4.428 1086589 55 0.030 0.034 1.													
44 460 0.024 0.129 1.387 0.208 0.052 1.169 0.212 0.422 5.4403 5571 6.515 5490 504 504 504 504 505 500 0.013 0.048 1.783 0.014 0.226 5.813 7.787 3480.038 51 500 0.013 0.049 1.813 0.417 0.027 1.589 0.049 0.263 4.291 6.957 2574.636 52 500 0.013 0.049 1.941 0.427 1.383 0.049 0.263 4.251 6.957 2574.636 545 540 0.009 0.034 1.246 0.021 1.720 0.034 0.181 0.021 1.720 0.034 0.193 1.186 0.324 0.193 1.186 0.034 0.192 3.144 4.262 1965.538 56 500 0.009 0.034 2.144 0.551 0.021 1.280 0.034 0.193 3.242	45	440	0.018	0.068	1.189	0.130	0.024	0.975	0.067	0.253	4.181	2.563	2508.449
48 470 0.0264 0.265 1.592 0.030 0.035 1.471 0.202 0.494 0.571 6.515 9402 50 480 0.027 0.131 0.685 0.354 0.552 1.513 0.494 0.521 5.813 7.878 3488.038 51 500 0.013 0.494 1.832 0.444 0.027 1.588 0.494 0.264 4.365 6.234 2219.218 53 500 0.013 0.494 0.426 0.494 0.264 4.365 6.234 2219.218 54 550 0.009 0.034 1.946 0.411 0.020 1.724 0.034 0.198 3.112 5.133 1867.359 56 0.009 0.034 2.141 0.520 0.024 0.142 0.034 0.198 3.122 5.133 1967.359 57 560 0.009 0.034 2.117 0.522 0.024 0.034 0.014 3.226													
449 440 0.027 0.133 0.968 1.783 0.036 1.540 0.084 0.783 0.390 0.008 0.083 0.282 5.813 7.776 3.486.038 51 500 0.013 0.049 1.813 0.414 0.027 1.589 0.049 0.260 4.211 6.577 2274.636 52 510 0.013 0.049 1.811 0.414 0.022 1.287 0.049 0.269 4.437 5.731 2282.157 54 530 0.009 0.034 1.246 0.012 1.774 0.034 0.181 0.020 1.720 0.034 0.181 1.925 1.936 0.019 3.144 4.425 11986.583 56 560 0.009 0.034 2.117 0.520 1.820 0.034 0.198 3.266 3.407 1993.322 56 500 0.009 0.034 2.151 0.613 0.021 1.926 0.034 0.203 3.428 <td></td>													
51 500 0.013 0.049 1.813 0.417 0.027 1.589 0.049 0.280 4.365 6.234 2817 52 510 0.013 0.049 1.911 0.471 0.028 1.887 0.049 0.284 4.365 6.234 2812137 54 530 0.003 0.034 1.946 0.0491 0.020 1.724 0.034 1.986 0.984 0.189 3.144 4.826 1866.889 55 550 0.009 0.034 2.044 0.531 0.020 1.784 0.034 1.984 1.995.332 56 560 0.009 0.034 2.042 0.071 0.200 1.856 0.034 1.941.854 1.992 0.034 0.196 3.266 3.607 1959.332 56 560 0.009 0.034 2.116 0.613 0.021 1.992 0.034 0.203 3.244 3.517 1976.423 56 580 0.009												7.890	5054.755
52 510 0.013 0.049 1.862 0.444 0.027 1.638 0.049 0.284 4.365 6.224 2819.219 53 520 0.013 0.049 0.134 0.146 0.149 0.189 3.112 5.133 1867.359 55 540 0.009 0.034 1.980 0.511 0.020 1.724 0.034 0.192 3.174 4.223 1965.538 56 550 0.009 0.034 2.044 0.551 0.020 1.822 0.034 0.198 3.142 4.233 1965.538 57 560 0.009 0.034 2.141 0.562 0.021 1.896 0.034 0.198 3.207 3.940 1923.927 61 600 0.034 2.161 0.613 0.021 1.982 0.034 0.201 3.224 3.407 1.993.927 61 600 0.034 2.215 0.637 0.2034 0.201 3.224 3.408													
54 530 0.009 0.034 1.946 0.491 0.020 1.720 0.034 0.180 3.112 5.193 1887.359 55 540 0.009 0.034 2.014 0.511 0.020 1.788 0.034 0.180 3.144 4.626 1886.689 56 550 0.009 0.034 2.014 0.551 0.020 1.782 0.034 0.181 3.207 3.340 1923.821 58 570 0.009 0.034 2.011 0.020 1.822 0.034 0.186 3.226 3.266 3.607 1993.932 60 580 0.009 0.034 2.185 0.634 0.021 1.980 0.034 0.203 3.349 3.426 2009.371 61 600 0.034 2.283 0.677 0.022 2.060 0.034 0.204 3.349 3.426 2009.371 63 620 0.034 2.232 0.720 0.022 0.034													
55 50 0.009 0.034 2.014 0.511 0.020 1.784 0.034 0.192 3.176 4.223 1995,588 56 500 0.009 0.034 2.014 0.531 0.020 1.788 0.034 0.192 3.176 4.223 1995,588 57 560 0.009 0.034 2.117 0.502 0.021 1.856 0.034 0.198 3.236 3.742 1941,854 59 500 0.009 0.034 2.117 0.562 0.021 1.980 0.034 0.201 3.340 3.567 1993,097 61 600 0.009 0.034 2.218 0.635 0.021 1.992 0.034 0.203 3.349 3.460 1993,097 62 640 0.009 0.034 2.228 0.691 0.222 2.060 0.034 0.203 3.349 3.460 2025,261 64 650 0.007 0.027 2.375 0.775													
56 50 0.009 0.034 2.014 0.531 0.020 1.788 0.034 0.194 3.207 3.940 1923.921 57 560 0.009 0.034 2.042 0.551 0.020 1.822 0.034 0.194 3.206 3.742 1941.854 58 0.009 0.034 2.117 0.592 0.021 1.890 0.034 0.208 3.236 3.742 1941.854 60 0.009 0.034 2.117 0.552 0.021 1.980 0.034 0.203 3.340 3.226 3.807 1993.352 61 600 0.009 0.034 2.233 0.677 0.022 2.026 0.034 0.203 3.340 3.226 3.309 2003.71 64 630 0.009 0.034 2.228 0.720 0.022 2.060 0.034 0.208 3.411 3.403 2041.72 65 640 0.007 0.027 2.243 0.017													
58 570 0.009 0.034 2.082 0.571 0.020 1.886 0.034 0.196 3.266 3.742 1941.854 59 580 0.009 0.034 2.1151 0.613 0.021 1.990 0.034 0.201 3.266 3.607 1959.352 61 600 0.009 0.034 2.185 0.634 0.021 1.992 0.034 0.201 3.322 3.460 1993.097 62 610 0.009 0.034 2.283 0.677 0.022 2.060 0.034 0.204 3.375 3.408 2025.261 64 630 0.007 0.027 2.348 0.738 0.017 2.102 0.034 0.206 3.401 3.403 2005.542 66 650 0.007 0.027 2.348 0.772 0.017 2.147 0.026 0.162 2.867 3.139 1616.125 67 660 0.007 0.027 2.440 0.770													
59 580 0.009 0.034 2.117 0.592 0.021 1.890 0.034 0.198 3.266 3.607 1959.352 60 590 0.008 0.214 1.184 0.034 0.200 3.244 3.517 1976.429 61 600 0.009 0.034 2.218 0.665 0.021 1.992 0.034 0.203 3.349 3.426 2003.371 62 610 0.009 0.034 2.288 0.699 0.022 2.060 0.034 0.204 3.475 3.408 2005.542 64 650 0.007 0.027 2.348 0.017 2.120 0.026 0.162 2.882 3.309 1603.325 67 660 0.007 0.277 2.375 0.775 0.017 2.147 0.026 0.163 2.697 3.139 1618.126 68 670 0.007 0.277 2.455 0.807 0.018 2.226 0.164 2.711													
60 590 0.09 0.034 2.151 0.613 0.021 1.924 0.034 0.201 3.224 3.517 1976.429 61 600 0.009 0.034 2.185 0.634 0.021 1.398 0.034 0.201 3.322 3.460 1993.097 62 610 0.009 0.034 2.228 0.655 0.021 1.992 0.034 0.206 3.447 3.408 2025.261 64 630 0.009 0.034 2.228 0.699 0.022 2.060 0.034 0.206 3.401 3.403 2040.782 65 640 0.009 0.034 2.228 0.700 0.022 2.040 0.034 0.206 3.401 3.403 2040.782 66 650 0.007 0.027 2.348 0.738 0.017 2.173 0.026 0.166 2.791 3.319 1616.372 66 650 0.007 0.027 2.458 0.076													
62 610 0.099 0.034 2.219 0.655 0.021 1.992 0.034 0.203 3.349 3.426 2009.371 63 620 0.099 0.034 2.238 0.677 0.022 2.026 0.034 0.204 3.375 3.408 2025.61 64 630 0.099 0.034 2.232 0.720 0.022 2.094 0.034 0.208 3.427 3.406 2055.942 66 650 0.007 0.027 2.348 0.738 0.017 2.147 0.026 0.162 2.682 3.309 1693.325 67 660 0.007 0.027 2.442 0.772 0.017 2.173 0.026 0.164 2.711 3.019 1632.627 69 680 0.007 0.027 2.481 0.825 0.018 2.252 0.026 0.164 2.791 2.841 1653.811 72 710 0.007 0.027 2.581 0.843	60	590	0.009	0.034	2.151	0.613	0.021	1.924	0.034	0.200	3.294	3.517	1976.429
63 620 0.099 0.034 2.253 0.677 0.022 2.026 0.034 0.204 3.375 3.408 2025.211 64 630 0.009 0.034 2.288 0.699 0.022 2.060 0.034 0.206 3.401 3.403 2040.782 66 640 0.007 0.027 2.348 0.720 0.022 2.040 0.034 0.206 3.421 3.408 2040.782 66 650 0.007 0.027 2.375 0.755 0.017 2.173 0.026 0.162 2.687 3.399 1603.325 67 660 0.007 0.027 2.428 0.790 0.017 2.199 0.026 0.165 2.725 2.937 1655.942 70 690 0.007 0.027 2.481 0.018 2.226 0.026 0.168 2.766 2.821 1653.896 71 700 0.007 0.027 2.581 0.018 2.352													
64 630 0.009 0.034 2.288 0.699 0.022 2.060 0.034 0.206 3.401 3.403 2040.782 65 640 0.009 0.034 2.322 0.720 0.022 2.094 0.034 0.206 3.427 3.406 2055.942 66 650 0.007 0.027 2.375 0.755 0.017 2.147 0.026 0.163 2.697 3.139 1618.126 68 670 0.007 0.027 2.442 0.772 0.017 2.173 0.026 0.164 2.711 3.019 1628.272 69 600 0.007 0.027 2.448 0.807 0.018 2.226 0.026 0.165 2.753 2.841 1653.811 71 700 0.007 0.027 2.535 0.843 0.018 2.305 0.026 0.168 2.760 2.808 1667.790 73 720 0.007 0.027 2.588 0.897													
66 650 0.007 0.027 2.348 0.738 0.017 2.120 0.026 0.162 2.682 3.399 1609.325 67 660 0.007 0.027 2.475 0.755 0.017 2.147 0.026 0.163 2.697 3.139 1618.126 68 670 0.007 0.027 2.428 0.790 0.017 2.199 0.026 0.165 2.725 2.937 1635.265 70 690 0.007 0.027 2.441 0.825 0.018 2.226 0.026 0.166 2.739 2.881 1643.610 71 700 0.007 0.027 2.481 0.825 0.018 2.262 0.026 0.168 2.760 2.804 1667.790 73 720 0.007 0.027 2.581 0.861 0.018 2.332 0.026 0.169 2.793 2.802 1675.575 75 740 0.007 0.027 2.561 0.879	64	630	0.009	0.034	2.288	0.699	0.022	2.060	0.034	0.206	3.401	3.403	2040.782
67 660 0.007 0.027 2.375 0.755 0.017 2.147 0.026 0.163 2.697 3.139 1618.126 68 670 0.007 0.027 2.402 0.772 0.017 2.173 0.026 0.164 2.711 3.019 1626.772 690 0.007 0.027 2.455 0.807 0.018 2.226 0.026 0.166 2.739 2.881 1643.610 71 700 0.007 0.027 2.481 0.825 0.018 2.226 0.026 0.166 2.739 2.881 1663.611 72 710 0.007 0.027 2.561 0.879 0.018 2.305 0.026 0.168 2.780 2.808 1667.790 74 730 0.007 0.027 2.561 0.879 0.018 2.332 0.026 0.170 2.805 2.801 1683.228 75 740 0.007 0.027 2.614 0.915 0.18													
69 680 0.007 0.027 2.428 0.790 0.017 2.199 0.026 0.165 2.725 2.937 1635.265 70 690 0.007 0.027 2.455 0.807 0.018 2.226 0.026 0.166 2.733 2.841 1661.611 71 700 0.007 0.027 2.508 0.843 0.018 2.279 0.026 0.168 2.766 2.821 1659.869 73 720 0.007 0.027 2.535 0.861 0.018 2.305 0.026 0.168 2.760 2.802 1667.790 74 730 0.007 0.027 2.581 0.879 0.018 2.332 0.026 0.169 2.793 2.802 1675.575 75 740 0.007 0.027 2.581 0.879 0.18 2.344 0.026 0.171 2.805 2.801 1689.752 76 750 0.007 0.027 2.641 0.933	67	660	0.007	0.027	2.375	0.755	0.017	2.147	0.026	0.163	2.697	3.139	1618.126
70 690 0.007 0.027 2.455 0.807 0.018 2.226 0.026 0.166 2.739 2.881 1643.610 71 700 0.007 0.027 2.481 0.825 0.018 2.252 0.026 0.167 2.753 2.844 1655.869 73 720 0.007 0.027 2.535 0.861 0.018 2.305 0.026 0.168 2.760 2.801 1667.790 74 730 0.007 0.027 2.561 0.879 0.018 2.332 0.026 0.169 2.783 2.802 1675.575 75 740 0.007 0.027 2.614 0.915 0.018 2.384 0.026 0.171 2.818 2.804 1690.752 76 750 0.007 0.027 2.641 0.933 0.018 2.414 0.026 0.171 2.818 2.804 1690.752 77 760 0.006 0.023 2.664 0.949													
71 700 0.007 0.027 2.481 0.825 0.018 2.252 0.026 0.167 2.753 2.844 1651.811 72 710 0.007 0.027 2.508 0.843 0.018 2.279 0.026 0.168 2.766 2.821 1655.869 73 720 0.007 0.027 2.561 0.861 0.018 2.305 0.026 0.168 2.780 2.802 167.575 74 730 0.007 0.027 2.561 0.879 0.018 2.382 0.026 0.170 2.802 2.801 1683.228 76 750 0.007 0.027 2.614 0.915 0.018 2.384 0.026 0.171 2.818 2.804 1690.752 77 760 0.006 0.023 2.664 0.949 0.016 2.434 0.023 0.148 2.444 2.673 1466.619 80 770 0.006 0.023 2.779 0.981 0.016 2.479 0.023 0.149 2.453 2.611 1471.812 <													
73 720 0.007 0.027 2.535 0.861 0.018 2.305 0.026 0.168 2.780 2.808 1667.790 74 730 0.007 0.027 2.561 0.879 0.018 2.332 0.026 0.169 2.783 2.802 1675.575 75 740 0.007 0.027 2.561 0.879 0.018 2.386 0.026 0.170 2.805 2.801 1683.228 76 750 0.007 0.027 2.614 0.915 0.018 2.344 0.026 0.171 2.818 2.804 1690.752 77 760 0.007 0.027 2.641 0.933 0.016 2.444 0.23 2.804 1690.752 77 760 0.006 0.023 2.667 0.965 0.016 2.456 0.023 0.148 2.444 2.673 1466.619 80 790 0.006 0.023 2.755 1.013 0.016 2.542	71	700	0.007	0.027	2.481	0.825	0.018	2.252	0.026	0.167	2.753	2.844	1651.811
74 730 0.007 0.027 2.561 0.879 0.018 2.332 0.026 0.169 2.793 2.802 1675.575 75 740 0.007 0.027 2.588 0.897 0.018 2.388 0.026 0.170 2.805 2.801 1683.228 76 750 0.007 0.027 2.614 0.915 0.018 2.384 0.026 0.171 2.818 2.804 1690.752 77 760 0.007 0.027 2.641 0.933 0.016 2.434 0.023 0.148 2.446 2.601 1466.619 78 770 0.006 0.023 2.767 0.965 0.016 2.450 0.023 0.141 1471.812 80 0.006 0.023 2.775 1.013 0.016 2.502 0.023 0.149 2.462 2.569 1476.932 82 810 0.006 0.023 2.778 1.029 0.16 2.547 0.023													
75 740 0.007 0.027 2.588 0.897 0.018 2.358 0.026 0.170 2.805 2.801 1683.228 76 750 0.007 0.027 2.614 0.915 0.018 2.384 0.026 0.171 2.818 2.804 1690.752 77 760 0.007 0.027 2.641 0.933 0.016 2.434 0.023 0.148 2.436 2.761 1461.351 78 700 0.006 0.023 2.667 0.965 0.016 2.434 0.023 0.148 2.444 2.673 1466.619 800 0.006 0.023 2.739 0.981 0.016 2.479 0.023 0.149 2.453 2.611 1471.812 81 800 0.006 0.023 2.775 1.013 0.016 2.502 0.023 0.149 2.462 2.569 1476.932 82 810 0.006 0.023 2.775 1.013 0.016													
77 760 0.007 0.027 2.641 0.933 0.018 2.411 0.026 0.171 2.830 2.809 1698.149 78 770 0.066 0.023 2.664 0.49 0.016 2.434 0.023 0.148 2.436 2.761 1466.191 79 780 0.066 0.023 2.709 0.965 0.016 2.456 0.023 0.148 2.444 2.673 1466.619 80 790 0.066 0.023 2.732 0.997 0.016 2.502 0.023 0.149 2.462 2.569 1476.932 82 810 0.066 0.023 2.775 1.013 0.016 2.547 0.023 0.150 2.478 2.522 1486.958 84 830 0.006 0.023 2.801 1.045 0.016 2.550 0.023 0.151 2.495 2.506 1496.707 86 850 0.006 0.023 2.846 1.077								2.358			2.805		1683.228
78 770 0.006 0.023 2.664 0.949 0.016 2.434 0.023 0.148 2.436 2.761 1461.351 79 780 0.006 0.023 2.687 0.965 0.016 2.450 0.023 0.148 2.444 2.673 1466.619 80 790 0.006 0.023 2.739 0.997 0.016 2.450 0.023 0.149 2.452 2.611 1471.812 81 800 0.006 0.023 2.775 1.013 0.016 2.524 0.023 0.149 2.462 2.569 1476.932 82 810 0.006 0.023 2.778 1.029 0.016 2.547 0.023 0.150 2.478 2.521 1486.958 84 830 0.006 0.023 2.801 1.047 0.016 2.592 0.023 0.151 2.486 2.511 1491.866 850 0.006 0.023 2.804 1.077 0.016													
80 790 0.006 0.023 2.709 0.981 0.016 2.479 0.023 0.149 2.453 2.611 1471.812 81 800 0.006 0.023 2.732 0.997 0.016 2.502 0.023 0.149 2.462 2.569 1476.932 82 810 0.006 0.023 2.755 1.013 0.016 2.524 0.023 0.150 2.470 2.541 1481.981 83 820 0.006 0.023 2.775 1.029 0.016 2.547 0.023 0.150 2.470 2.521 1486.986 84 830 0.006 0.023 2.801 1.045 0.016 2.570 0.023 0.151 2.486 2.511 1491.866 85 840 0.006 0.023 2.861 1.077 0.016 2.615 0.023 0.152 2.502 2.504 1501.481 86 80.00 0.006 0.023 2.869 1.094	78	770	0.006	0.023		0.949	0.016		0.023		2.436	2.761	1461.351
81 800 0.006 0.023 2.732 0.997 0.016 2.502 0.023 0.149 2.462 2.569 1476.932 82 810 0.006 0.023 2.755 1.013 0.016 2.524 0.023 0.150 2.470 2.541 1481.981 83 820 0.006 0.023 2.778 1.029 0.016 2.547 0.023 0.150 2.478 2.522 1486.958 84 830 0.006 0.023 2.801 1.045 0.016 2.570 0.023 0.151 2.486 2.511 1491.866 85 840 0.006 0.023 2.803 1.061 0.016 2.592 0.023 0.151 2.485 2.506 1496.707 86 850 0.006 0.023 2.869 1.077 0.016 2.618 0.023 0.152 2.501 2.504 1501.832 860 0.006 0.023 2.869 1.004 0.016													
82 810 0.006 0.023 2.755 1.013 0.016 2.524 0.023 0.150 2.470 2.541 1481,981 83 820 0.006 0.023 2.778 1.029 0.016 2.547 0.023 0.150 2.470 2.541 1481,981 84 830 0.006 0.023 2.781 1.029 0.016 2.547 0.023 0.150 2.478 2.522 1486,958 84 830 0.006 0.023 2.801 1.045 0.016 2.570 0.023 0.151 2.486 2.511 1496,707 86 850 0.006 0.023 2.869 1.007 0.016 2.612 0.023 0.152 2.502 2.504 1501,431 87 800 0.006 0.023 2.892 1.100 0.016 2.681 0.023 0.153 2.518 2.507 1510.832 88 870 0.006 0.023 2.931 1.126													
84 830 0.006 0.023 2.801 1.045 0.016 2.570 0.023 0.151 2.486 2.511 1491.866 85 840 0.006 0.023 2.823 1.061 0.016 2.592 0.023 0.151 2.486 2.511 1491.866 85 840 0.006 0.023 2.846 1.077 0.016 2.615 0.023 0.151 2.495 2.506 1496.707 86 0.006 0.023 2.866 1.077 0.016 2.615 0.023 0.152 2.502 2.504 1501.481 87 860 0.006 0.023 2.892 1.110 0.016 2.661 0.023 0.153 2.518 2.507 1510.832 88 870 0.006 0.023 2.934 1.140 0.014 2.702 0.013 0.153 2.526 2.511 1515.413 90 880 0.005 0.019 2.934 1.140 0.014	82	810	0.006	0.023	2.755	1.013	0.016	2.524	0.023	0.150	2.470	2.541	1481.981
85 840 0.006 0.023 2.823 1.061 0.016 2.592 0.023 0.151 2.495 2.506 1496.707 86 850 0.006 0.023 2.846 1.07 0.016 2.615 0.023 0.151 2.495 2.506 1496.707 86 860 0.006 0.023 2.846 1.07 0.016 2.615 0.023 0.152 2.502 2.504 1501.481 87 860 0.006 0.023 2.892 1.100 0.016 2.661 0.023 0.153 2.518 2.507 1510.832 88 870 0.006 0.023 2.915 1.126 0.016 2.683 0.023 0.153 2.526 2.511 1516.832 880 0.005 0.019 2.934 1.140 0.014 2.702 0.019 0.128 2.110 2.458 1266.299 91 900 0.005 0.019 2.972 1.168 0.014													
86 850 0.006 0.023 2.846 1.077 0.016 2.615 0.023 0.152 2.502 2.504 1501.481 87 860 0.006 0.023 2.849 1.094 0.016 2.638 0.023 0.152 2.510 2.504 1501.481 88 870 0.006 0.023 2.892 1.110 0.016 2.661 0.023 0.152 2.518 2.507 1510.322 89 880 0.006 0.023 2.915 1.126 0.016 2.681 0.023 0.153 2.526 2.511 1515.413 90 890 0.005 0.019 2.934 1.140 0.014 2.702 0.019 0.128 2.110 2.458 1266.299 91 900 0.005 0.019 2.937 1.154 0.014 2.740 0.019 0.128 2.116 2.363 1266.299 92 910 0.005 0.019 2.972 0.164													
88 870 0.006 0.023 2.892 1.110 0.016 2.661 0.023 0.153 2.518 2.507 1510.832 89 880 0.006 0.023 2.915 1.126 0.016 2.683 0.023 0.153 2.526 2.511 1515.413 90 890 0.005 0.019 2.934 1.140 0.014 2.702 0.019 0.128 2.110 2.458 1266.299 91 900 0.005 0.019 2.934 1.154 0.014 2.721 0.019 0.128 2.116 2.363 1266.401 92 910 0.005 0.019 2.972 1.168 0.014 2.740 0.019 0.128 2.121 2.296 1272.469	86	850	0.006	0.023	2.846	1.077	0.016	2.615	0.023	0.152	2.502	2.504	1501.481
89 880 0.006 0.023 2.915 1.126 0.016 2.683 0.023 0.153 2.526 2.511 1515.413 90 890 0.005 0.019 2.934 1.140 0.014 2.702 0.019 0.128 2.110 2.458 1266.299 91 900 0.005 0.019 2.953 1.154 0.014 2.721 0.019 0.128 2.116 2.363 1266.401 92 910 0.005 0.019 2.972 1.168 0.014 2.740 0.019 0.128 2.121 2.296 1272.469													
90 890 0.005 0.019 2.934 1.140 0.014 2.702 0.019 0.128 2.110 2.458 1266.299 91 900 0.005 0.019 2.953 1.154 0.014 2.721 0.019 0.128 2.116 2.363 1269.401 92 910 0.005 0.019 2.972 1.168 0.014 2.740 0.019 0.128 2.121 2.296 1272.469			0.006	0.023					0.023			2.511	
92 910 0.005 0.019 2.972 1.168 0.014 2.740 0.019 0.128 2.121 2.296 1272.469													

HYDRAULIC CROSSINGS SANTA BARBARA UNIT HYDROGRAPH METHOD

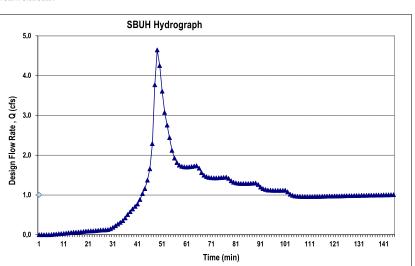
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
					Pervio	Pervious Area		ious Area				
	Time	Rainfal Distrib. (fractio	Incre. Rainfall	Accumul,	Accumul,	Incre,	Accumul,	Incre,	Total Runoff	Instant Flowrate		
Time Incr.	(min)	n)	(in)		Runoff (in)		Runoff (in)	Runoff (in)	(in)	(cfs)	Design Flowrate (cfs)	Instant Vol. (ft ³)
94	930	0.005	0.019	3.010	1.195	0.014	2.778	0.019	0.129	2.131	2.215	1278.50
95	940	0.005	0.019	3.029	1.209	0.014	2,797	0.019	0.129	2.136	2,193	1281.47
96	950	0.005	0.019	3.048	1.223	0.014	2.816	0.019	0.130	2.141	2.178	1284.40
97	960	0.005	0.019	3.067	1.237	0.014	2.835	0.019	0.130	2.146	2.168	1287.3
98	970	0.005	0.019	3.086	1.251	0.014	2.854	0.019	0.130	2.150	2.163	1290.17
99	980	0.005	0.019	3.105	1.266	0.014	2.872	0.019	0.131	2.155	2.160	1293.01
100	990	0.005	0.019	3.124	1.280	0.014	2.891	0.019	0.131	2.160	2.159	1295.82
101	1000	0.005	0.019	3.143	1.294	0.014	2.910	0.019	0.131	2.164	2.160	1298.59
102	1010	0.004	0.015	3.158	1.305	0.011	2.925	0.015	0.105	1.735	2.102	1040.85
103 104	1020	0.004 0.004	0.016 0.016	3.174	1.317	0.012	2.941	0.016 0.016	0.111	1.825	2.014	1094.77
104	1030 1040	0.004	0.016	3.190 3.206	1.329 1.341	0.012 0.012	2.957 2.973	0.016	0.111 0.111	1.828 1.831	1.962 1.926	1096.68 1098.56
105	1040	0.004	0.016	3.206	1.341	0.012	2.973	0.016	0.111	1.834	1.920	1096.50
106	1050	0.004	0.016	3.222	1.353	0.012	2.969	0.016	0.111	1.837	1.882	1100.43
107	1000	0.004	0.010	3.254	1.305	0.012	3.021	0.010	0.111	1.840	1.870	1102.23
109	1080	0.004	0.016	3.270	1.389	0.012	3.027	0.016	0.112	1.843	1.862	1105.95
110	1090	0.004	0.016	3.285	1.401	0.012	3.053	0.016	0.112	1.846	1.858	1107.75
111	1100	0.004	0.016	3.301	1.413	0.012	3.069	0.016	0.112	1.849	1.855	1109.54
112	1110	0.004	0.016	3.317	1.426	0.012	3.084	0.016	0.112	1.852	1.854	1111.3
113	1120	0.004	0.016	3.333	1.438	0.012	3.100	0.016	0.112	1.855	1.854	1113.0
114	1130	0.004	0.016	3.349	1.450	0.012	3.116	0.016	0.113	1.858	1.855	1114.8
115	1140	0.004	0.016	3.365	1.462	0.012	3.132	0.016	0.113	1.861	1.856	1116.5
116	1150	0.004	0.016	3.381	1.474	0.012	3.148	0.016	0.113	1.864	1.858	1118.2
117	1160	0.004	0.016	3.397	1.487	0.012	3.164	0.016	0.113	1.867	1.860	1119.9
118	1170	0.004	0.016	3.413	1.499	0.012	3.180	0.016	0.113	1.869	1.862	1121.63
119	1180	0.004	0.016	3.429	1.511	0.012	3.196	0.016	0.113	1.872	1.864	1123.3
120	1190	0.004	0.016	3.445	1.523	0.012	3.212	0.016	0.114	1.875	1.867	1124.95
121	1200	0.004	0.016	3.461	1.536	0.012	3.228	0.016	0.114	1.878	1.869	1126.59
122	1210	0.004	0.016	3.477	1.548	0.012	3.244	0.016	0.114	1.880	1.872	1128.2
123	1220	0.004	0.016	3.493	1.561	0.012	3.259	0.016	0.114	1.883	1.875	1129.83
124	1230	0.004	0.016	3.509	1.573	0.012	3.275	0.016	0.114	1.886	1.877	1131.42
125 126	1240 1250	0.004 0.004	0.016 0.016	3.525 3.541	1.585 1.598	0.012 0.012	3.291 3.307	0.016 0.016	0.114 0.115	1.888 1.891	1.880 1.883	1133.0 ⁻ 1134.58
126	1250	0.004	0.016	3.541	1.598	0.012	3.307	0.016	0.115	1.891	1.883	1134.5
127	1260	0.004	0.016	3.557	1.610	0.012	3.323	0.016	0.115	1.894	1.888	1136.14
120	1270	0.004	0.016	3.589	1.635	0.012	3.355	0.016	0.115	1.899	1.891	1137.0
130	1200	0.004	0.016	3.605	1.648	0.012	3.371	0.016	0.115	1.901	1.893	1140.73
131	1300	0.004	0.016	3.621	1.660	0.013	3.387	0.016	0.115	1.904	1.896	1142.2
132	1310	0.004	0.016	3.637	1.673	0.013	3.403	0.016	0.115	1.906	1.898	1143.73
133	1320	0.004	0.016	3.653	1.685	0.013	3.419	0.016	0.116	1.909	1.901	1145.2
134	1330	0.004	0.016	3.669	1.698	0.013	3.434	0.016	0.116	1.911	1.903	1146.6
135	1340	0.004	0.016	3.684	1.711	0.013	3.450	0.016	0.116	1.914	1.906	1148.1
136	1350	0.004	0.016	3.700	1.723	0.013	3.466	0.016	0.116	1.916	1.908	1149.58
137	1360	0.004	0.016	3.716	1.736	0.013	3.482	0.016	0.116	1.918	1.911	1151.0
138	1370	0.004	0.016	3.732	1.749	0.013	3.498	0.016	0.116	1.921	1.913	1152.43
139	1380	0.004	0.016	3.748	1.761	0.013	3.514	0.016	0.116	1.923	1.916	1153.84
140	1390	0.004	0.016	3.764	1.774	0.013	3.530	0.016	0.117	1.925	1.918	1155.24
141	1400	0.004	0.016	3.780	1.787	0.013	3.546	0.016	0.117	1.928	1.920	1156.6
142	1410	0.004	0.016	3.796	1.799	0.013	3.562	0.016	0.117	1.930	1.923	1158.0
143	1420	0.004	0.016	3.812	1.812	0.013	3.578	0.016	0.117	1.932	1.925	1159.3
144	1430	0.004	0.016	3.828	1.825	0.013	3.594	0.016	0.117	1.935	1.927	1160.72
145	1440	0.004	0.016	3.844	1.838	0.013	3.610	0.016	0.117	1.937	1.930	1162.0
		1,0							18,181		7,890	180088.

Tota

SBUH DESIGN WORKSHEET	- <mark>25-yr</mark>		POST-PRO	JECT
	-			ZONE 8
PROJECT:	FPP- Bull Run			Event 24-hour precip (in ODOT Transgis
BASIN	DA 4			WQ 1.61 https://gis.odot state or.us/transgis/
OUTFALL:	Culvert (Unknow	n Size)		2-yr 2.40
TREATMENT FACILITY:	N/A			5-yr 2.9
FACILITY NAME:	N/A			10-year 3.4
TOTAL IMPERVIOUS AREA		sq ft		25-yr 3.8
Total Drainage Area	12.82			100-yr 4.7
Parameters		Units		Comments
Total length of Flow	1540	ft		Total length of sheet flow, concentrated flow and pipe flow segments
Sheet Flow Segment		_		
Length	90			
Slope of hydraulic Grid Line - S _o	0.02	ft/ft		
n _s - Sheet flow Manning' Effective				
roughness coeff.	0.15			table III-1.4 from 1992 Puget Sound SWMM
Travel time (sheet Flow Segment) T1 =				
0.42 (n _s L) ^{0.8} /((1.58*(S _o) ^{0.4})	12.1	min		[City of Portland Stormwater Management Manual 2004 page C-2]
0.12 (h ₃ 2) /((1.00 (0 ₀)) /	12.1			
Shallow Concentrated Flow Segment	0.40	0		_
Length	940 0.0150			
S _o				[City of Portland Stormwater Management Manual 2004 page C-2]
Velocity V = 20.3282(S _o)^0.5	2.49			[City of Portland Stormwater Management Manual 2004 page C-2]
$T_2 = L/(60*V)$	6.3	min		[City of Portland Stormwater Management Manual 2004 page C-2]
Ditch Flow Segment				
Length	510			
T ₃ = L/(60*V)		min		
Given Area		acres		
P _t Depth of Rainfa ll	3.80	in		25-yr
				^change based on IDR event values.
dt	10	min		Time Interval
T _c	21.3	min		
Routing Constant w= d _t /(2T _c +d _t)	0.190			
Pervious Area (acres)	11.96		CN 7	79 S = (1000/CN)-10 2.6582278 0.2*S 0.531646
Impervious Area (acres)	0.87	1	CN 9	1000/CN) 10 0.2040816 0.2*S 0.040816
	1	1		

I

 Summary Results


 Santa Barbara Urban Hydrograph (SBUH) Method Using SCS Type 1A Storm Distribution

 DEVELOPED - Upper End (25 yr)

 Peak Design Flow Rate
 4.64

 Total Runoff
 28.93

 Total Runoff Volume
 91,123

 [1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
	[*]	[•]	[*]	[0]		us Area		ous Area	[10]	101	[12]	[10]
Time Incr.	Time (min)	Rainfal Distrib. (fractio n)		Accumul. Rainfall (in)	Accumul. Runoff (in)	Incre. Runoff (in)	Accumul. Runoff (in)	Incre. Runoff (in)		Instant Flowrate (cfs)	Design Flowrate (cfs)	Instant Vol. (ft ³)
1	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	10	0.004	0.015	0.015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	20	0.004	0.015	0.030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	30	0.004	0.015	0.046	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.345
5	40	0.004	0.015	0.061	0.000	0.000	0.002	0.002	0.002	0.009	0.002	5.268
6	50	0.004	0.015	0.076	0.000	0.000	0.005	0.003	0.003	0.018	0.006	10.682
7	60	0.004	0.015	0.091	0.000	0.000	0.010	0.005	0.005	0.025	0.012	15,125

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
					Perviou			ious Area				
		Rainfal Distrib.	Incre.						Total	Instant		
Time Incr.	Time (min)	(fractio n)	Rainfall (in)	Accumul. Rainfall (in)	Accumul. Runoff (in)	Incre. Runoff (in)	Accumul. Runoff (in)	Incre. Runoff (in)	Runoff (in)	Flowrate (cfs)	Design Flowrate (cfs)	Instant Vol. (ft ³)
8	70	0.004	0.015	0.106	0.000	0.000	0.016	0.006	0.006	0.031	0.018	18.817
9 10	80 90	0.004 0.004	0.015 0.015	0.122 0.137	0.000 0.000	0.000 0.000	0.023 0.031	0.007 0.008	0.007 0.008	0.037 0.041	0.024 0.030	21.918 24.547
11	100	0.004	0.015	0.152	0.000	0.000	0.039	0.009	0.009	0.045	0.035	26.796
12 13	110 120	0.005 0.005	0.019 0.019	0.171 0.190	0.000 0.000	0.000 0.000	0.051 0.063	0.011 0.012	0.011 0.012	0.060 0.065	0.041 0.049	36.191 38.735
13	130	0.005	0.019	0.190	0.000	0.000	0.003	0.012	0.012	0.068	0.056	40.890
15	140	0.005	0.019	0.228	0.000	0.000	0.090	0.014	0.014	0.071	0.061	42.730
16 17	150 160	0.005 0.005	0.019 0.019	0.247 0.266	0.000 0.000	0.000 0.000	0.104 0.118	0.014 0.015	0.014 0.015	0.074 0.076	0.065 0.069	44.315 45.690
18	170	0.006	0.023	0.289	0.000	0.000	0.136	0.018	0.018	0.094	0.075	56.398
19 20	180 190	0.006 0.006	0.023	0.312 0.334	0.000 0.000	0.000 0.000	0.154 0.173	0.018 0.019	0.018 0.019	0.096 0.099	0.083	57.878 59.155
20	200	0.006	0.023	0.357	0.000	0.000	0.173	0.019	0.019	0.099	0.088 0.093	60.264
22	210	0.006	0.023	0.380	0.000	0.000	0.212	0.019	0.019	0.102	0.096	61.233
23 24	220 230	0.006 0.007	0.023 0.027	0.403 0.429	0.000 0.000	0.000 0.000	0.231 0.255	0.020 0.023	0.020 0.023	0.103 0.122	0.099 0.104	62.085 73.378
25	240	0.007	0.027	0.456	0.000	0.000	0.278	0.024	0.024	0.124	0.111	74.272
26	250	0.007	0.027	0.483	0.000	0.000	0.302	0.024	0.024	0.125	0.116	75.055
27 28	260 270	0.007 0.007	0.027 0.027	0.509 0.536	0.000 0.000	0.000 0.000	0.326 0.350	0.024 0.024	0.024 0.024	0.126 0.128	0.120 0.123	75.745 76.638
29	280	0.007	0.027	0.562	0.000	0.000	0.375	0.024	0.029	0.153	0.129	91.885
30 31	290 300	0.008 0.008	0.030 0.030	0.593 0.623	0.001 0.003	0.001 0.002	0.403 0.431	0.028 0.028	0.042 0.051	0.221 0.269	0.151 0.187	132.899 161.651
31	310	0.008	0.030	0.654	0.005	0.002	0.460	0.028	0.060	0.209	0.227	189.415
33	320	0.008	0.030	0.684	0.008	0.003	0.488	0.029	0.069	0.360	0.270	216.240
34 35	330 340	0.008 0.008	0.030 0.030	0.714 0.745	0.012 0.016	0.003 0.004	0.517 0.546	0.029 0.029	0.077 0.085	0.404 0.445	0.312 0.355	242.173 267.254
36	350	0.010	0.038	0.783	0.022	0.006	0.582	0.036	0.117	0.614	0.422	368.105
37 38	360 370	0.010 0.010	0.038 0.038	0.821 0.859	0.028 0.036	0.007 0.007	0.618 0.655	0.036 0.036	0.128 0.140	0.674 0.733	0.506 0.581	404.523 439.517
39	380	0.010	0.038	0.855	0.030	0.007	0.691	0.030	0.140	0.733	0.650	473.164
40	390	0.010	0.038	0.935	0.053	0.009	0.728	0.037	0.161	0.843	0.713	505.535
41 42	400 410	0.010 0.013	0.038 0.049	0.973 1.022	0.063 0.076	0.010 0.014	0.765 0.812	0.037 0.048	0.170 0.236	0.894 1.237	0.772 0.884	536.694 742.403
43	420	0.013	0.049	1.072	0.091	0.015	0.860	0.048	0.251	1.318	1.034	790.743
44 45	430 440	0.013 0.018	0.049 0.068	1.121 1.189	0.107 0.130	0.016 0.024	0.909 0.975	0.048 0.067	0.266 0.391	1.395 2.052	1.157 1.372	836.850 1230.953
45	440	0.018	0.068	1.258	0.156	0.024	1.042	0.067	0.391	2.052	1.656	1310.184
47	460	0.034	0.129	1.387	0.208	0.052	1.169	0.127	0.849	4.457	2.290	2674.468
48 49	470 480	0.054 0.027	0.205 0.103	1.592 1.695	0.302 0.354	0.094 0.052	1.371 1.472	0.202 0.101	1.500 0.812	7.876 4.263	3.767 4.644	4725.875 2557.717
50	490	0.018	0.068	1.763	0.390	0.036	1.540	0.068	0.562	2.950	4.249	1770.279
51 52	500 510	0.013 0.013	0.049 0.049	1.813 1.862	0.417 0.444	0.027 0.027	1.589 1.638	0.049 0.049	0.416 0.423	2.182 2.223	3.608 3.073	1309.121
52	520	0.013	0.049	1.002	0.444	0.027	1.687	0.049	0.423	2.223	2.756	1333.694 1357.363
54	530	0.009	0.034	1.946	0.491	0.020	1.720	0.034	0.303	1.589	2.440	953.124
55 56	540 550	0.009 0.009	0.034 0.034	1.980 2.014	0.511 0.531	0.020 0.020	1.754 1.788	0.034 0.034	0.306 0.309	1.606 1.624	2.119 1.927	963.781 974.173
57	560	0.009	0.034	2.048	0.551	0.020	1.822	0.034	0.313	1.641	1.815	984.310
58 59	570 580	0.009 0.009	0.034 0.034	2.082 2.117	0.571 0.592	0.020 0.021	1.856 1.890	0.034 0.034	0.316 0.319	1.657 1.673	1.751 1.719	994.198 1003.847
60	590	0.009	0.034	2.151	0.613	0.021	1.924	0.034	0.322	1.689	1.704	1013.263
61	600	0.009	0.034	2.185	0.634	0.021	1.958	0.034	0.325	1.704	1.701	1022.456
62 63	610 620	0.009 0.009	0.034 0.034	2.219 2.253	0.655 0.677	0.021 0.022	1.992 2.026	0.034 0.034	0.327 0.330	1.719 1.734	1.705 1.713	1031.430 1040.194
64	630	0.009	0.034	2.288	0.699	0.022	2.060	0.034	0.333	1.748	1.724	1048.754
65 66	640 650	0.009 0.007	0.034 0.027	2.322 2.348	0.720 0.738	0.022 0.017	2.094 2.120	0.034 0.026	0.336 0.263	1.762 1.380	1.736 1.673	1057.116 827.860
67	660	0.007	0.027	2.375	0.755	0.017	2.147	0.026	0.264	1.388	1.563	832.714
68	670	0.007	0.027	2.402	0.772	0.017	2.173	0.026	0.266	1.396	1.498	837.483
69 70	680 690	0.007 0.007	0.027 0.027	2.428 2.455	0.790 0.807	0.017 0.018	2.199 2.226	0.026 0.026	0.267 0.269	1.404 1.411	1.460 1.440	842.168 846.772
71	700	0.007	0.027	2.481	0.825	0.018	2.252	0.026	0.270	1.419	1.431	851.295
72 73	710 720	0.007 0.007	0.027 0.027	2.508 2.535	0.843 0.861	0.018 0.018	2.279 2.305	0.026 0.026	0.272 0.273	1.426 1.434	1.428 1.428	855.741 860.110
74	730	0.007	0.027	2.561	0.879	0.018	2.332	0.026	0.274	1.441	1.432	864.405
75 76	740 750	0.007 0.007	0.027 0.027	2.588 2.614	0.897 0.915	0.018 0.018	2.358 2.384	0.026 0.026	0.276 0.277	1.448 1.455	1.436 1.442	868.627 872.778
76	760	0.007	0.027	2.614	0.933	0.018	2.364	0.026	0.277	1.461	1.448	876.859
78 70	770	0.006	0.023	2.664	0.949	0.016	2.434	0.023	0.240	1.258	1.414	754.790
79 80	780 790	0.006 0.006	0.023 0.023	2.687 2.709	0.965 0.981	0.016 0.016	2.456 2.479	0.023 0.023	0.241 0.241	1.263 1.268	1.356 1.321	757.697 760.562
81	800	0.006	0.023	2.732	0.997	0.016	2.502	0.023	0.242	1.272	1.302	763.387
82 83	810 820	0.006 0.006	0.023	2.755 2.778	1.013 1.029	0.016 0.016	2.524 2.547	0.023 0.023	0.243 0.244	1.277 1.282	1.291 1.287	766.172 768.919
84	830	0.006	0.023	2.801	1.045	0.016	2.570	0.023	0.245	1.286	1.286	771.627
85	840 850	0.006	0.023	2.823	1.061	0.016	2,592	0.023	0.246	1.290	1.287	774.298
86 87	850 860	0.006 0.006	0.023 0.023	2.846 2.869	1.077 1.094	0.016 0.016	2.615 2.638	0.023 0.023	0.247 0.248	1.295 1.299	1.289 1.292	776.932 779.529
88	870	0.006	0.023	2.892	1.110	0.016	2.661	0.023	0.248	1.303	1.296	782.092
89 90	880 890	0.006 0.005	0.023 0.019	2.915 2.934	1.126 1.140	0.016 0.014	2.683 2.702	0.023 0.019	0.249 0.208	1.308 1.093	1.299 1.262	784.619 655.756
91	900	0.005	0.019	2.953	1.154	0.014	2.721	0.019	0.208	1.096	1.198	657.468
92	910 020	0.005	0.019	2.972	1.168	0.014	2.740	0.019	0.209	1.099	1.160	659.161
93	920	0.005	0.019	2.991	1.182	0.014	2.759	0.019	0.210	1.101	1.137	660.835

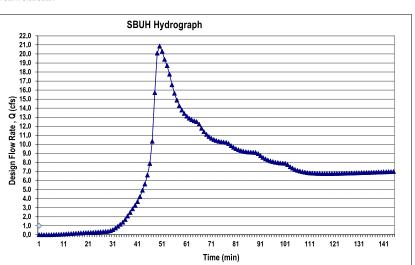
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
					Perviou	is Area	Imperv	ous Area				
		Rainfal Distrib.	Incro						Tota	Instant		
			Rainfall	Accumul.	Accumul.	Incre.	Accumul.	Incre.		Flowrate		
Time Incr.		n)	(in)		Runoff (in)		Runoff (in)	Runoff (in)	(in)	(cfs)	Design Flowrate (cfs)	Instant Vol. (ft ³)
94	930	0.005	0.019	3.010	1.195	0.014	2.778	0.019	0.210	1.104	1.124	662.49
95	940	0.005	0.019	3.029	1.209	0.014	2,797	0.019	0.211	1.107	1.117	664.12
96	950	0.005	0.019	3.048	1.223	0.014	2.816	0.019	0.211	1.110	1.114	665.74
97	960	0.005	0.019	3.067	1.237	0.014	2.835	0.019	0.212	1.112	1.113	667.34
98	970	0.005	0.019	3.086	1.251	0.014	2.854	0.019	0.212	1.115	1.113	668.93
99	980	0.005	0.019	3.105	1.266	0.014	2.872	0.019	0.213	1.117	1.114	670.49
100 101	990 1000	0.005 0.005	0.019 0.019	3.124 3.143	1.280 1.294	0.014 0.014	2.891 2.910	0.019 0.019	0.213 0.214	1.120 1.123	1.116 1.118	672.04 673.58
101	1000	0.005	0.019	3.143	1.294	0.014	2.910	0.019	0.214	0.900	1.077	539.95
102	1020	0.004	0.015	3.174	1.305	0.012	2.925	0.015	0.180	0.947	1.019	567.98
103	1020	0.004	0.016	3.190	1.329	0.012	2.957	0.016	0.181	0.948	0.992	569.04
105	1040	0.004	0.016	3.206	1.341	0.012	2.973	0.016	0.181	0.950	0.975	570.08
106	1050	0.004	0.016	3.222	1.353	0.012	2.989	0.016	0.181	0.952	0.966	571.11
107	1060	0.004	0.016	3.238	1.365	0.012	3.005	0.016	0.182	0.954	0.961	572.13
108	1070	0.004	0.016	3.254	1.377	0.012	3.021	0.016	0.182	0.955	0.959	573.15
109	1080	0.004	0.016	3.270	1.389	0.012	3.037	0.016	0.182	0.957	0.958	574.15
110	1090	0.004	0.016	3.285	1.401	0.012	3.053	0.016	0.183	0.959	0.958	575.15
111	1100	0.004	0.016	3.301	1.413	0.012	3.069	0.016	0.183	0.960	0.958	576.13
112	1110	0.004	0.016	3.317	1.426	0.012	3.084	0.016	0.183	0.962	0.959	577.11
113 114	1120 1130	0.004 0.004	0.016 0.016	3.333 3.349	1.438 1.450	0.012 0.012	3.100 3.116	0.016 0.016	0.184 0.184	0.963 0.965	0.961 0.962	578.08 579.04
114	1140	0.004	0.016	3.349	1.450	0.012	3.116	0.016	0.184	0.965	0.962	580.00
116	1150	0.004	0.016	3.381	1.474	0.012	3.148	0.016	0.184	0.968	0.965	580.94
117	1160	0.004	0.016	3.397	1.487	0.012	3.164	0.016	0.185	0.970	0.967	581.88
118	1170	0.004	0.016	3.413	1.499	0.012	3.180	0.016	0.185	0.971	0.968	582.81
119	1180	0.004	0.016	3.429	1.511	0.012	3.196	0.016	0.185	0.973	0.970	583.73
120	1190	0.004	0.016	3.445	1.523	0.012	3.212	0.016	0.186	0.974	0.971	584.64
121	1200	0.004	0.016	3.461	1.536	0.012	3.228	0.016	0.186	0.976	0.973	585.54
122	1210	0.004	0.016	3.477	1.548	0.012	3.244	0.016	0.186	0.977	0.974	586.44
123	1220	0.004	0.016	3.493	1.561	0.012	3.259	0.016	0.186	0.979	0.976	587.33
124	1230	0.004	0.016	3.509	1.573	0.012	3.275	0.016	0.187	0.980	0.977	588.21
125 126	1240 1250	0.004 0.004	0.016 0.016	3.525 3.541	1.585 1.598	0.012 0.012	3.291 3.307	0.016 0.016	0.187 0.187	0.982 0.983	0.979 0.980	589.09 589.95
126	1250	0.004	0.016	3.541	1.696	0.012	3.307	0.016	0.187	0.985	0.982	509.95
127	1200	0.004	0.016	3.573	1.623	0.012	3.339	0.016	0.188	0.986	0.983	591.67
129	1280	0.004	0.016	3.589	1.635	0.012	3.355	0.016	0.188	0.988	0.984	592.51
130	1290	0.004	0.016	3.605	1.648	0.013	3.371	0.016	0.188	0.989	0.986	593.35
131	1300	0.004	0.016	3.621	1.660	0.013	3.387	0.016	0.189	0.990	0.987	594.18
132	1310	0.004	0.016	3.637	1.673	0.013	3.403	0.016	0.189	0.992	0.989	595.00
133	1320	0.004	0.016	3.653	1.685	0.013	3.419	0.016	0.189	0.993	0.990	595.82
134	1330	0.004	0.016	3.669	1.698	0.013	3.434	0.016	0.189	0.994	0.991	596.63
135	1340	0.004	0.016	3.684	1.711	0.013	3.450	0.016	0.190	0.996	0.993	597.44
136	1350 1360	0.004 0.004	0.016 0.016	3.700 3.716	1.723	0.013 0.013	3.466 3.482	0.016 0.016	0.190 0.190	0.997	0.994	598.23
137 138	1360	0.004	0.016	3.732	1.736 1.749	0.013	3.482 3.498	0.016	0.190	0.998 1.000	0.996 0.997	599.02 599.81
130	1380	0.004	0.016	3.748	1.749	0.013	3.490	0.016	0.190	1.000	0.998	600.59
140	1390	0.004	0.016	3.764	1.774	0.013	3.530	0.016	0.191	1.002	1.000	601.36
141	1400	0.004	0.016	3.780	1.787	0.013	3.546	0.016	0.191	1.004	1.001	602.12
142	1410	0.004	0.016	3.796	1.799	0.013	3.562	0.016	0.191	1.005	1.002	602.88
143	1420	0.004	0.016	3.812	1.812	0.013	3.578	0.016	0.192	1.006	1.003	603.64
144	1430	0.004	0.016	3.828	1.825	0.013	3.594	0.016	0.192	1.007	1.005	604.38
145	1440	0.004	0.016	3.844	1.838	0.013	3.610	0.016	0.192	1.009	1.006	605.12
		1.0							28,932		4,644	91123.3

Tota

SBUH DESIGN WORKSHEET -	25-yr		POST-F	PROJECT
				ZONE 8
PROJECT:	FPP- Bull Run			Event 24-hour precip (in ODOT Transgis
BASIN	DA 3			WQ 1.61 https://gis.odot state or.us/transgis/
OUTFALL:	24" CPP			2-yr 2.40
TREATMENT FACILITY:	N/A			5-yr 2.9
FACILITY NAME:	N/A			10-year 3.4
TOTAL IMPERVIOUS AREA		sq ft		25-yr 3.8
Total Drainage Area	90.27			100-yr 4.7
Parameters		Units		Comments
Total length of Flow	4270	ft		Total length of sheet flow, concentrated flow and pipe flow segments
Sheet Flow Segment		0		
Length	200			
Slope of hydraulic Grid Line - S _o	0.01	ft/ft		
n _s - Sheet flow Manning' Effective				
roughness coeff.	0.15			table III-1.4 from 1992 Puget Sound SWMM
Travel time (sheet Flow Segment) T1 =				
0.42 (n _s L) ^{0.8} /((1.58*(S _o) ^{0.4})	30.3	min		[City of Portland Stormwater Management Manual 2004 page C-2]
on = (s=) /((oo (o) /				
Shallow Concentrated Flow Segment				
Length	100	ft		
S	0.0100			[City of Portland Stormwater Management Manual 2004 page C-2]
Velocity V = 20.3282(S _o)^0.5	2.03			[City of Portland Stormwater Management Manual 2004 page C-2]
$T_2 = L/(60*V)$		min		[City of Portland Stormwater Management Manual 2004 page C-2] [City of Portland Stormwater Management Manual 2004 page C-2]
2	0.8	min		City of Portiand Stormwater Management Manual 2004 page C-2
Pipe Flow Segment	3970	4		
	22.1			<u> </u>
T ₃ = L/(60*V)				
Given Area		acres		25-vr
P _t Depth of Rainfall	3.80	111		
l	10			^change based on IDR event values.
a _t		min		Time Interval
Tc	53.2			
Routing Constant w= d _t /(2T _c +d _t)	0.086			
Pervious Area (acres)	87.46		CN	79 S = (1000/CN)-10 2.6582278 0.2*S 0.531646
Impervious Area (acres)	2.80		CN	98 S = (1000/CN)-10 0.2040816 0.2*S 0.040816
		[

I

 Summary Results


 Santa Barbara Urban Hydrograph (SBUH) Method Using SCS Type 1A Storm Distribution

 DEVELOPED - Upper End (25 yr)

 Peak Design Flow Rate
 20.86 of s

 Total Runoff
 60.93 in

 Total Runoff Volume
 620,204 of 21.0

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
						Pervior	is Area	Impervi	ous Area				
1	lime Incr.	Time	Rainfal Distrib, (fractio n)	Rainfall	Accumul. Rainfall (in)	Accumul. Runoff (in)			Incre. Runoff (in)	Runoff	Instant Flowrate (cfs)	Design Flowrate (cfs)	Instant Vol. (ft ³)
- [1	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	2	10	0.004	0.015	0.015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	3	20	0.004	0.015	0.030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	4	30	0.004	0.015	0.046	0.000	0.000	0.000	0.000	0.000	0.002	0.000	1.115
	5	40	0.004	0.015	0.061	0.000	0.000	0.002	0.002	0.002	0.028	0.003	17.028
	6	50	0.004	0.015	0.076	0.000	0.000	0.005	0.003	0.003	0.058	0.010	34.523
	-	60	0.004	0.015	0.091	0.000	0.000	0.010	0.005	0.005	0.081	0.020	48.884

SBUH Calcs.xlsx

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
	[2]	[0]	[7]	[0]	Perviou			ious Area	[10]		[12]	[10]
		Rainfal										
		Distrib.	Incre.					Ι.	Total	Instant		
Time Incr.	Time (min)	(fractio n)	Rainfall (in)	Accumul. Rainfall (in)	Accumul. Runoff (in)	Incre. Runoff (in)	Accumul. Runoff (in)	Incre. Runoff (in)	Runoff (in)	Flowrate (cfs)	Design Flowrate (cfs)	Instant Vol. (ft ³)
8	70	0.004	0.015	0.106	0.000	0.000	0.016	0.006	0.006	0.101	0.032	60.816
9 10	80 90	0.004 0.004	0.015 0.015	0.122 0.137	0.000 0.000	0.000 0.000	0.023 0.031	0.007 0.008	0.007 0.008	0.118 0.132	0.046 0.059	70.838 79.338
10	100	0.004	0.015	0.152	0.000	0.000	0.039	0.008	0.008	0.132	0.039	86.607
12	110	0.005	0.019	0.171	0.000	0.000	0.051	0.011	0.011	0.195	0.089	116.972
13 14	120 130	0.005 0.005	0.019 0.019	0.190 0.209	0.000 0.000	0.000 0.000	0.063 0.076	0.012 0.013	0.012 0.013	0.209 0.220	0.109 0.127	125.194 132.158
14	140	0.005	0.019	0.209	0.000	0.000	0.070	0.013	0.013	0.220	0.127	138.107
16	150	0.005	0.019	0.247	0.000	0.000	0.104	0.014	0.014	0.239	0.159	143.229
17 18	160 170	0.005 0.006	0.019 0.023	0.266 0.289	0.000 0.000	0.000 0.000	0.118 0.136	0.015 0.018	0.015 0.018	0.246 0.304	0.174 0.191	147.672 182.281
10	180	0.006	0.023	0.269	0.000	0.000	0.156	0.018	0.018	0.304	0.211	187.065
20	190	0.006	0.023	0.334	0.000	0.000	0.173	0.019	0.019	0.319	0.229	191.191
21 22	200 210	0.006 0.006	0.023	0.357 0.380	0.000 0.000	0.000 0.000	0.192 0.212	0.019 0.019	0.019 0.019	0.325 0.330	0.245 0.259	194.774 197.907
23	220	0.000	0.023	0.403	0.000	0.000	0.231	0.020	0.020	0.334	0.233	200.661
24	230	0.007	0.027	0.429	0.000	0.000	0.255	0.023	0.023	0.395	0.288	237.161
25 26	240 250	0.007 0.007	0.027 0.027	0.456	0.000 0.000	0.000 0.000	0.278 0.302	0.024 0.024	0.024	0.400 0.404	0.307	240.049 242.580
20 27	250 260	0.007	0.027	0.483 0.509	0.000	0.000	0.302	0.024	0.024 0.024	0.404	0.323 0.337	242.580
28	270	0.007	0.027	0.536	0.000	0.000	0.350	0.024	0.024	0.415	0.350	248.845
29 30	280	0.007	0.027	0.562	0.000	0.000	0.375	0.024	0.035	0.597	0.377	358.165
30 31	290 300	0.008 0.008	0.030 0.030	0.593 0.623	0.001 0.003	0.001 0.002	0.403 0.431	0.028 0.028	0.060 0.080	1.018 1.365	0.451 0.578	610.931 818.974
32	310	0.008	0.030	0.654	0.005	0.002	0.460	0.028	0.100	1.700	0.742	1020.048
33	320	0.008	0.030	0.684	0.008	0.003	0.488	0.029	0.119	2.024	0.935	1214.477
34 35	330 340	0.008 0.008	0.030 0.030	0.714 0.745	0.012 0.016	0.003 0.004	0.517 0.546	0.029 0.029	0.138 0.156	2.338 2.641	1.149 1.379	1402.561 1584.583
36	350	0.010	0.038	0.783	0.022	0.006	0.582	0.036	0.219	3.713	1.688	2227.888
37	360	0.010	0.038	0.821	0.028	0.007	0.618	0.036	0.245	4.154	2.074	2492.480
38 39	370 380	0.010 0.010	0.038 0.038	0.859 0.897	0.036 0.044	0.007 0.008	0.655 0.691	0.036 0.037	0.270 0.294	4.578 4.986	2.468 2.866	2746.862 2991.562
40	390	0.010	0.038	0.935	0.053	0.000	0.728	0.037	0.317	4.300 5.378	3.264	3227.074
41	400	0.010	0.038	0.973	0.063	0.010	0.765	0.037	0.339	5.756	3.660	3453.857
42 43	410 420	0.013 0.013	0.049 0.049	1.022 1.072	0.076 0.091	0.014 0.015	0.812 0.860	0.048 0.048	0.473 0.508	8.026 8.613	4.215 4.920	4815.463 5167.529
43	430	0.013	0.049	1.121	0.107	0.015	0.909	0.048	0.541	9.172	5.603	5503.442
45	440	0.018	0.068	1.189	0.130	0.024	0.975	0.067	0.800	13.578	6.595	8146.610
46 47	450 460	0.018 0.034	0.068 0.129	1.258	0.156	0.025	1.042	0.067	0.857 1.762	14.540	7.878	8724.205
47 48	460 470	0.034	0.129	1.387 1.592	0.208 0.302	0.052 0.094	1.169 1.371	0.127 0.202	3.141	29.892 53.290	10.342 15.712	17935.237 31974.163
49	480	0.027	0.103	1.695	0.354	0.052	1.472	0.101	1,710	29.014	20.084	17408.683
50	490	0.018	0.068	1.763	0.390	0.036	1.540	0.068	1.187	20.135	20.856	12081.289
51 52	500 510	0.013 0.013	0.049 0.049	1.813 1.862	0.417 0.444	0.027 0.027	1.589 1.638	0.049 0.049	0.879 0.897	14.914 15.214	20.283 19.386	8948.693 9128.128
53	520	0.013	0.049	1.911	0.471	0.028	1.687	0.049	0.914	15.502	18.694	9300.968
54	530	0.009	0.034	1.946	0.491	0.020	1.720	0.034	0.642	10.895	17.750	6537.070
55 56	540 550	0.009 0.009	0.034 0.034	1.980 2.014	0.511 0.531	0.020 0.020	1.754 1.788	0.034 0.034	0.650 0.657	11.025 11.151	16.583 15.639	6614.900 6690.799
57	560	0.009	0.034	2.048	0.551	0.020	1.822	0.034	0.665	11.275	14.878	6764.830
58	570	0.009	0.034	2.082	0.571	0.020	1.856	0.034	0.672	11.395	14.269	6837.055
59 60	580 590	0.009 0.009	0.034 0.034	2.117 2.151	0.592 0.613	0.021 0.021	1.890 1.924	0.034 0.034	0.679 0.685	11.513 11.627	13.785 13.405	6907.531 6976.315
61	600	0.009	0.034	2.185	0.634	0.021	1.958	0.034	0.692	11.739	13.109	7043.461
62	610	0.009	0.034	2.219	0.655	0.021	1.992	0.034	0.698	11.848	12.883	7109.020
63 64	620 630	0.009 0.009	0.034 0.034	2.253 2.288	0.677 0.699	0.022 0 <u>.</u> 022	2.026 2.060	0.034 0.034	0.705 0.711	11.955 12.059	12.714 12.593	7173.041 7235.573
65	640	0.009	0.034	2.322	0.720	0.022	2.094	0.034	0.717	12.161	12.510	7296.662
66	650	0.007	0.027	2.348	0.738	0.017	2.120	0.026	0.562	9.528	12.224	5716.518
67 68	660 670	0.007 0.007	0.027 0.027	2.375 2.402	0.755 0.772	0.017 0.017	2.147 2.173	0.026 0.026	0.565 0.568	9.587 9.645	11.765 11.396	5751.985 5786.826
69	680	0.007	0.027	2.428	0.790	0.017	2.199	0.026	0.572	9.702	11.100	5821.057
70	690	0.007	0.027	2.455	0.807	0.018	2.226	0.026	0.575	9.758	10.864	5854.690
71 72	700 710	0.007 0.007	0.027 0.027	2.481 2.508	0.825 0.843	0.018 0.018	2.252 2.279	0.026 0.026	0.578 0.582	9.813 9.867	10.679 10.535	5887.741 5920.222
73	720	0.007	0.027	2.535	0.861	0.018	2.305	0.026	0.585	9.920	10.425	5952.147
74	730	0.007	0.027	2.561	0.879	0.018	2.332	0.026	0.588	9.973	10.342	5983.528
75 76	740 750	0.007 0.007	0.027 0.027	2.588 2.614	0.897 0.915	0.018 0.018	2.358 2.384	0.026 0.026	0.591 0.594	10.024 10.075	10.283 10.243	6014.377 6044.707
70	760	0.007	0.027	2.641	0.933	0.018	2.411	0.026	0.597	10.124	10.243	6074.529
78	770	0.006	0.023	2.664	0.949	0.016	2.434	0.023	0.514	8.717	10.081	5230.098
79 80	780 790	0.006 0.006	0.023 0.023	2.687 2.709	0.965 0.981	0.016 0.016	2.456 2.479	0.023 0.023	0.516 0.518	8.752 8.787	9.850 9.664	5251.336 5272.274
81	800	0.006	0.023	2.732	0.981	0.016	2.502	0.023	0.518	8.822	9.516	5292.917
82	810	0.006	0.023	2.755	1.013	0.016	2.524	0.023	0.522	8.855	9.400	5313.271
83 84	820 830	0.006 0.006	0.023 0.023	2.778 2.801	1.029 1.045	0.016 0.016	2.547 2.570	0.023 0.023	0.524 0.526	8.889 8.922	9.309 9.240	5333.340 5353.131
85	840	0.006	0.023	2.801	1.045	0.016	2.570	0.023	0.528	8.922 8.954	9.240	5372.648
86	850	0.006	0.023	2.846	1.077	0.016	2.615	0.023	0.530	8.986	9.151	5391.896
87 88	860 870	0.006 0.006	0.023	2.869 2.892	1.094	0.016 0.016	2.638	0.023	0.532	9.018 9.049	9.125	5410.881 5429.607
88 89	870 880	0.006	0.023	2.892 2.915	1.110 1.126	0.016	2.661 2.683	0.023 0.023	0.533 0.535	9.049 9.080	9.109 9.102	5429.607 5448.078
90	890	0.005	0.019	2.934	1.140	0.014	2.702	0.019	0.447	7.590	8.970	4553.995
91	900	0.005	0.019	2.953	1.154	0.014	2.721	0.019	0.449	7.611	8.735	4566.507
92 93	910 920	0.005 0.005	0.019 0.019	2.972 2.991	1.168 1.182	0.014 0.014	2.740 2.759	0.019 0.019	0.450 0.451	7.631 7.652	8.543 8.388	4578.879 4591.113
•					_							

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
					Pervio	us Area	Imperv	ious Area				
	Time	Rainfal Distrib. (fractio	Incre. Rainfall	Accumul,	Accumul,	Incre,	Accumul,	Incre.	Total Runoff	Instant Flowrate		
Time Incr.	(min)	n)	(in)		Runoff (in)		Runoff (in)	Runoff (in)	(in)	(cfs)	Design Flowrate (cfs)	Instant Vol. (ft ³)
94	930	0.005	0.019	3.010	1.195	0.014	2.778	0.019	0.452	7.672	8.263	4603.21
95	940	0.005	0.019	3.029	1.209	0.014	2,797	0.019	0.453	7.692	8.164	4615.17
96	950	0.005	0.019	3.048	1.223	0.014	2.816	0.019	0.455	7.712	8.084	4627.00
97	960	0.005	0.019	3.067	1.237	0.014	2.835	0.019	0.456	7.731	8.022	4638.7
98	970	0.005	0.019	3.086	1.251	0.014	2.854	0.019	0.457	7.750	7.974	4650.28
99	980	0.005	0.019	3.105	1.266	0.014	2.872	0.019	0.458	7.770	7.937	4661.73
100	990	0.005	0.019	3.124	1.280	0.014	2.891	0.019	0.459	7.788	7.910	4673.05
101	1000	0.005	0.019	3.143	1.294	0.014	2.910	0.019	0.460	7.807	7.890	4684.26
102	1010	0.004	0.015	3.158	1.305	0.011	2.925	0.015	0.369	6.259	7.743	3755.39
103 104	1020	0.004 0.004	0.016	3.174 3.190	1.317	0.012	2.941	0.016 0.016	0.388	6.585 6.597	7.516	3950.72
104 105	1030 1040	0.004	0.016 0.016	3.190 3.206	1.329 1.341	0.012 0.012	2.957 2.973	0.016	0.389 0.390	6.597 6.610	7.357 7.228	3958.40 3966.02
105	1040	0.004	0.016	3.206	1.341	0.012	2.973	0.016	0.390	6.623	7.123	3966.02
106	1050	0.004	0.016	3.222	1.353	0.012	2.969	0.016	0.390	6.635	7.038	3973.50
107	1000	0.004	0.016	3.254	1.305	0.012	3.005	0.010	0.392	6.647	6.970	3988.45
109	1080	0.004	0.016	3.270	1.389	0.012	3.037	0.016	0.393	6.660	6.915	3995.79
110	1090	0.004	0.016	3.285	1.401	0.012	3.053	0.016	0.393	6.672	6.872	4003.07
111	1100	0.004	0.016	3.301	1.413	0.012	3.069	0.016	0.394	6.684	6.839	4010.29
112	1110	0.004	0.016	3.317	1.426	0.012	3.084	0.016	0.395	6.696	6.813	4017.44
113	1120	0.004	0.016	3.333	1.438	0.012	3.100	0.016	0.395	6.708	6.794	4024.53
114	1130	0.004	0.016	3.349	1.450	0.012	3.116	0.016	0.396	6.719	6.780	4031.55
115	1140	0.004	0.016	3.365	1.462	0.012	3.132	0.016	0.397	6.731	6.771	4038.52
116	1150	0.004	0.016	3.381	1.474	0.012	3.148	0.016	0.397	6.742	6.765	4045.43
117	1160	0.004	0.016	3.397	1.487	0.012	3.164	0.016	0.398	6.754	6.762	4052.27
118	1170	0.004	0.016	3.413	1.499	0.012	3.180	0.016	0.399	6.765	6.762	4059.06
119	1180	0.004	0.016	3.429	1.511	0.012	3.196	0.016	0.399	6.776	6.763	4065.78
120	1190	0.004	0.016	3.445	1.523	0.012	3.212	0.016	0.400	6.787	6.766	4072.45
121	1200	0.004	0.016	3.461	1.536	0.012	3.228	0.016	0.401	6.798	6.771	4079.07
122	1210	0.004	0.016	3.477	1.548	0.012	3.244	0.016	0.401	6.809	6.777	4085.62
123	1220	0.004	0.016	3.493	1.561	0.012	3.259	0.016	0.402	6.820	6.783	4092.12
124	1230	0.004	0.016	3.509	1.573	0.012	3.275	0.016	0.403	6.831	6.790	4098.57
125 126	1240 1250	0.004 0.004	0.016 0.016	3.525 3.541	1.585 1.598	0.012 0.012	3.291 3.307	0.016 0.016	0.403 0.404	6.842 6.852	6.798 6.807	4104.96 4111.29
126	1250	0.004	0.016	3.541	1.598	0.012	3.307	0.016	0.404	6.863	6.815	4111.2
127	1260	0.004	0.016	3.557	1.610	0.012	3.323	0.016	0.404	6.873	6.824	4117.50
120	1270	0.004	0.016	3.589	1.635	0.012	3.355	0.016	0.405	6.883	6.834	4123.0
123	1200	0.004	0.016	3.605	1.648	0.012	3.371	0.016	0.406	6.894	6.843	4136.11
131	1300	0.004	0.016	3.621	1.660	0.013	3.387	0.016	0.407	6.904	6.853	4142.19
132	1310	0.004	0.016	3.637	1.673	0.013	3.403	0.016	0.408	6.914	6.862	4148.21
133	1320	0.004	0.016	3.653	1.685	0.013	3.419	0.016	0.408	6.924	6.872	4154.19
134	1330	0.004	0.016	3.669	1.698	0.013	3.434	0.016	0.409	6.934	6.882	4160.11
135	1340	0.004	0.016	3.684	1.711	0.013	3.450	0.016	0.409	6.943	6.891	4165.9
136	1350	0.004	0.016	3.700	1.723	0.013	3.466	0.016	0.410	6.953	6.901	4171.82
137	1360	0.004	0.016	3.716	1.736	0.013	3.482	0.016	0.410	6.963	6.911	4177.6
138	1370	0.004	0.016	3.732	1.749	0.013	3.498	0.016	0.411	6.972	6.921	4183.33
139	1380	0.004	0.016	3.748	1.761	0.013	3.514	0.016	0.412	6.982	6.930	4189.02
140	1390	0.004	0.016	3.764	1.774	0.013	3.530	0.016	0.412	6.991	6.940	4194.66
141	1400	0.004	0.016	3.780	1.787	0.013	3.546	0.016	0.413	7.000	6.950	4200.25
142	1410	0.004	0.016	3.796	1.799	0.013	3.562	0.016	0.413	7.010	6.959	4205.80
143	1420	0.004	0.016	3.812	1.812	0.013	3.578	0.016	0.414	7.019	6.969	4211.31
144	1430	0.004	0.016	3.828	1.825	0.013	3.594	0.016	0.414	7.028	6.978	4216.77
145	1440	0.004	0.016	3.844	1.838	0.013	3.610	0.016	0.415	7.037	6.987	4222.18
		1,0							60,926		20,856	620204,

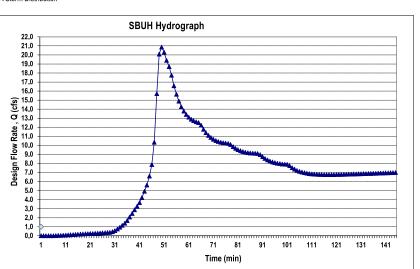
Tota

BASIN DA 1 OUTFALL: 12" C TREATMENT FACILITY: N/A FACILITY NAME: N/A	28.29 1100 200	sq ft acre Units			ZONE 8 Event 24-hour precip (in ODOT Transgis WQ 1.61 https://gis.odot state or.us/transgis/ 2-yr 2.40 5-yr 2.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32,500 28.29 1100 200	acre			WQ 1.61 https //gis.odot state or.us/transgis/ 2-yr 2.40
OUTFALL: 12" C TREATMENT FACILITY: N/A FACILITY NAME: N/A TOTAL IMPERVIOUS AREA 3 Total Drainage Area 3 Parameters 1 Total length of Flow 5 Sheet Flow Segment 1 Length 1 Slope of hydraulic Grid Line - S ₀ 1 roughness coeff. 1 Travel time (sheet Flow Segment) T ₁ = 0.42 (n ₆ L) ^{0.8} /((1.58"(S ₀) ^{0.4}) Shallow Concentrated Flow Segment 1	28.29 1100 200	acre			2-yr 2.40
TREATMENT FACILITY: N/A FACILITY NAME: N/A TOTAL IMPERVIOUS AREA 3 Total Drainage Area 3 Parameters 1 Total Ingen of Flow 5 Sheet Flow Segment 1 Length 1 Slope of hydraulic Grid Line - S ₀ 1 r _a - Sheet flow Manning' Effective 1 roughess coeff. 1 Travel time (sheet Flow Segment) T ₁ = 0.42 (n _a L) ^{0,b} /((1.58"(S ₀) ^{0,4}) Shallow Concentrated Flow Segment 1	32,500 28.29 1100 200	acre			
FACILITY NAME: N/A TOTAL IMPERVIOUS AREA 3 Total Drainage Area 3 Parameters 1 Total length of Flow 5 Sheet Flow Segment 1 Length 5 Slope of hydraulic Grid Line - S ₀ 1 r ₀ - Sheet flow Manning' Effective 1 roughness coeff. 1 Travel time (sheet Flow Segment) T ₁ = 0.42 (n ₆ L) ^{0,8} /((1.58*(S ₀) ^{0,4}) Shallow Concentrated Flow Segment 1	28.29 1100 200	acre			5-yr 2.9
TOTAL IMPERVIOUS AREA 3 Total Drainage Area 9 Parameters 7 Total length of Flow 5 Sheet Flow Segment 1 Length 5 Slope of hydraulic Grid Line - So 6 n _s - Sheet flow Manning' Effective 7 roughness coeff. 7 Travel time (sheet Flow Segment) T ₁ = 0.42 (n _s L) ^{0.8} /((1.58*(So) ^{0.4}) Shallow Concentrated Flow Segment 5	28.29 1100 200	acre			
Total Drainage Area Parameters Total length of Flow Sheet Flow Segment Length Slope of hydraulic Grid Line - S ₀ n_s - Sheet flow Manning' Effective roughness coeff. Travel time (sheet Flow Segment) T ₁ = 0.42 ($n_s L$) ^{0.8} /((1.58*(S ₀) ^{0.4}) Shallow Concentrated Flow Segment	28.29 1100 200	acre			10-year 3.4
Parameters Total length of Flow Sheet Flow Segment Length Slope of hydraulic Grid Line - S ₀ n _s - Sheet flow Manning' Effective roughness coeff. Travel time (sheet Flow Segment) T ₁ = 0.42 (n _s L) ^{0.8} /((1.58*(S ₀) ^{0.4}) Shallow Concentrated Flow Segment	1100				25-yr 3.8
Total length of Flow Sheet Flow Segment Length Slope of hydraulic Grid Line - S ₀ n_s - Sheet flow Manning' Effective roughness coeff. Travel time (sheet Flow Segment) T ₁ = $0.42 (n_s L)^{0.8} / ((1.58^* (S_0)^{0.4}))$ Shallow Concentrated Flow Segment	1100 200	Units			100-yr 4.7
Sheet Flow Segment Length Slope of hydraulic Grid Line - S ₀ n_s - Sheet flow Manning' Effective roughness coeff. Travel time (sheet Flow Segment) T ₁ = 0.42 ($n_s L$) ^{0.8} /((1.58*(S ₀) ^{0.4}) Shallow Concentrated Flow Segment	200				Comments
Length Slope of hydraulic Grid Line - S ₀ n_s - Sheet flow Manning' Effective roughness coeff. Travel time (sheet Flow Segment) T ₁ = 0.42 (n ₅ L) ^{0.8} /((1.58*(S ₀) ^{0.4}) Shallow Concentrated Flow Segment		ft			Total length of sheet flow, concentrated flow and pipe flow segments
Slope of hydraulic Grid Line - S ₀ n_s - Sheet flow Manning' Effective roughness coeff. Travel time (sheet Flow Segment) T ₁ = $0.42 (n_s L)^{0.8} / ((1.58^* (S_0)^{0.4}))$ Shallow Concentrated Flow Segment					
n_s - Sheet flow Manning' Effective roughness coeff. Travel time (sheet Flow Segment) $T_1 = 0.42 (n_s L)^{0.8} / ((1.58^*(S_u)^{0.4})$ Shallow Concentrated Flow Segment					
roughness coeff. Travel time (sheet Flow Segment) T ₁ = 0.42 (n _s L) ^{0.8} /((1.58*(S ₀) ^{0.4}) Shallow Concentrated Flow Segment	0.01	ft/ft			
Travel time (sheet Flow Segment) T ₁ = 0.42 (n _s L) ^{0.8} /((1.58*(S ₀) ^{0.4}) Shallow Concentrated Flow Segment					
0.42 (n _s L) ^{0.8} /((1.58*(S ₀) ^{0.4}) Shallow Concentrated Flow Segment	0.15				table III-1.4 from 1992 Puget Sound SWMM
Shallow Concentrated Flow Segment					-
Shallow Concentrated Flow Segment	30.3	min			[City of Portland Stormwater Management Manual 2004 page C-2]
	00.0			ť	
Length	550	0			
0	0.0110				
S _o					[City of Portland Stormwater Management Manual 2004 page C-2]
Velocity V = 20.3282(S _o)^0.5	2.13				[City of Portland Stormwater Management Manual 2004 page C-2]
$T_2 = L/(60*V)$	4.3	min			[City of Portland Stormwater Management Manual 2004 page C-2]
Pipe Flow Segment					
Length	350				
$T_3 = L/(60*V)$		min			
Given Area		acres			
P _t Depth of Rainfall	3.80	in			25-yr
					^change based on IDR event values.
dt	10	min			Time Interval
Tc	36.6	min			
Routing Constant w= d _t /(2T _c +d _t)	0.120				
Pervious Area (acres)	27.55		CN	79	S = (1000/CN)-10 2.6582278 0.2*S 0.531646
Impervious Area (acres)			CN		S = (1000/CN)-10 0.2040816 0.2*S 0.040816
· · · · · · · · · · · · · · · · · · ·	0.75	1			

I

 Summary Results

 Santa Barbara Urban Hydrograph (SBUH) Method Using SCS Type 1A Storm Distribution


 DEVELOPED - Upper End (25 yr)

 Peak Design Flow Rate
 7.67

 Total Runoff
 71.46

 Total Runoff Volume
 193,528

 cf
 21.0

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
						Pervio	is Area	Impervi	ous Area				
			Rainfal Distrib,	Incre.						Total	Instant		
Time In		Time (min)	(fractio n)		Accumul. Rainfall (in)	Accumul. Runoff (in)			Incre. Runoff (in)	Runoff (in)	Flowrate (cfs)	Design Flowrate (cfs)	Instant Vol. (ft ³)
	1	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	2	10	0.004	0.015	0.015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	3	20	0.004	0.015	0.030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	4	30	0.004	0.015	0.046	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.297
	5	40	0.004	0.015	0.061	0.000	0.000	0.002	0.002	0.002	0.008	0.001	4.530
	6	50	0.004	0.015	0.076	0.000	0.000	0.005	0.003	0.003	0.015	0.004	9.185
	7	60	0.004	0.015	0.091	0.000	0.000	0.010	0.005	0.005	0.022	0.007	13.006

SBUH Calcs.xlsx

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
					Perviou		Imperv	ious Area				
		Rainfal Distrib.	Incre.						Total	Instant		
Time Incr,	Time (min)			Accumul. Rainfall (in)	Accumul. Runoff (in)	Incre. Runoff (in)	Accumul. Runoff (in)	Incre. Runoff (in)	Runoff (in)	Flowrate (cfs)	Design Flowrate (cfs)	Instant Vol. (ft ³)
8	70	0.004	0.015	0.106	0.000	0.000	0.016	0.006	0.006	0.027	0.011	16.180
9 10	80 90	0.004 0.004	0.015 0.015	0.122 0.137	0.000 0.000	0.000 0.000	0.023 0.031	0.007 0.008	0.007 0.008	0.031 0.035	0.016 0.020	18.847 21.108
11	100	0.004	0.015	0.152	0.000	0.000	0.039	0.009	0.009	0.038	0.024	23.042
12 13	110 120	0.005 0.005	0.019 0.019	0.171 0.190	0.000 0.000	0.000 0.000	0.051 0.063	0.011 0.012	0.011 0.012	0.052	0.029	31.121 33.309
13	130	0.005	0.019	0.209	0.000	0.000	0.003	0.012	0.012	0.056 0.059	0.035 0.040	35.161
15	140	0.005	0.019	0.228	0.000	0.000	0.090	0.014	0.014	0.061	0.045	36.744
16 17	150 160	0.005 0.005	0.019 0.019	0.247 0.266	0.000 0.000	0.000 0.000	0.104 0.118	0.014 0.015	0.014 0.015	0.064 0.065	0.049 0.053	38.107 39.289
18	170	0.005	0.023	0.289	0.000	0.000	0.136	0.018	0.018	0.081	0.058	48.497
19	180	0.006	0.023	0.312	0.000	0.000	0.154	0.018	0.018	0.083	0.064	49.770
20 21	190 200	0.006 0.006	0.023 0.023	0.334 0.357	0.000 0.000	0.000 0.000	0.173 0.192	0.019 0.019	0.019 0.019	0.085 0.086	0.068 0.073	50.867 51.821
22	210	0.006	0.023	0.380	0.000	0.000	0.212	0.019	0.019	0.088	0.076	52.654
23 24	220 230	0.006 0.007	0.023 0.027	0.403 0.429	0.000 0.000	0.000 0.000	0.231 0.255	0.020 0.023	0.020 0.023	0.089 0.105	0.079 0.083	53.387 63.098
24	240	0.007	0.027	0.456	0.000	0.000	0.278	0.023	0.023	0.105	0.089	63.866
26	250	0.007	0.027	0.483	0.000	0.000	0.302	0.024	0.024	0.108	0.093	64.540
27 28	260 270	0.007 0.007	0.027 0.027	0.509 0.536	0.000 0.000	0.000 0.000	0.326 0.350	0.024 0.024	0.024 0.024	0.109 0.111	0.097 0.100	65.133 66.307
29	280	0.007	0.027	0.562	0.000	0.000	0.375	0.024	0.037	0.168	0.109	100.650
30	290	0.008	0.030	0.593	0.001	0.001	0.403	0.028	0.066	0.297	0.139	178.426
31 32	300 310	0.008 0.008	0.030 0.030	0.623 0.654	0.003 0.005	0.002 0.002	0.431 0.460	0.028 0.028	0.090 0.113	0.406 0.512	0.190 0.255	243.857 307.104
33	320	0.008	0.030	0.684	0.008	0.003	0.488	0.029	0.136	0.614	0.329	368.266
34 35	330 340	0.008 0.008	0.030 0.030	0.714 0.745	0.012 0.016	0.003 0.004	0.517 0.546	0.029 0.029	0.158 0.179	0.712 0.808	0.409 0.494	427.437 484.705
36	350	0.000	0.038	0.783	0.022	0.004	0.582	0.025	0.252	1.139	0.609	683.650
37	360	0.010	0.038	0.821	0.028	0.007	0.618	0.036	0.283	1.278	0.754	766.908
38 39	370 380	0.010 0.010	0.038 0.038	0.859 0.897	0.036 0.044	0.007 0.008	0.655 0.691	0.036 0.037	0.313 0.341	1.412 1.540	0.896 1.035	846.959 923.968
40	390	0.010	0.038	0.935	0.053	0.009	0.728	0.037	0.369	1.663	1.172	998.089
41	400 410	0.010 0.013	0.038 0.049	0.973 1.022	0.063 0.076	0.010 0.014	0.765 0.812	0.037 0.048	0.395	1.782 2.488	1.304 1.504	1069.466
42 43	410	0.013	0.049	1.022	0.078	0.014	0.812	0.048	0.551 0.592	2.400	1.763	1492.740 1603.557
44	430	0.013	0.049	1.121	0.107	0.016	0.909	0.048	0.631	2.849	2.003	1709.295
45 46	440 450	0.018 0.018	0.068 0.068	1.189 1.258	0.130 0.156	0.024 0.025	0.975 1.042	0.067 0.067	0.935 1.002	4.221 4.524	2.372 2.853	2532.438 2714.265
40	460	0.034	0.129	1.387	0.208	0.052	1.169	0.127	2.062	9.309	3.831	5585.372
48	470	0.054	0.205	1.592	0.302	0.094	1.371	0.202	3.681	16.615	6.028	9969.260
49 50	480 490	0.027 0.018	0.103 0.068	1.695 1.763	0.354 0.390	0.052 0.036	1.472 1.540	0.101 0.068	2.006 1.392	9.054 6.285	7.666 7.667	5432.213 3771.189
51	500	0.013	0.049	1.813	0.417	0.027	1.589	0.049	1.032	4.657	7.138	2793.950
52 53	510 520	0.013 0.013	0.049 0.049	1.862 1.911	0.444 0.471	0.027 0.028	1.638 1.687	0.049 0.049	1.052 1.073	4.751 4.841	6.553 6.130	2850.447 2904.869
54	530	0.013	0.049	1.946	0.491	0.028	1.720	0.049	0.754	3.403	5.647	2041.901
55	540	0.009	0.034	1.980	0.511	0.020	1.754	0.034	0.763	3.444	5.112	2066.407
56 57	550 560	0.009 0.009	0.034 0.034	2.014 2.048	0.531 0.551	0.020 0.020	1.788 1.822	0.034 0.034	0.772 0.780	3.484 3.523	4.715 4.424	2090.305 2113.615
58	570	0.009	0.034	2.082	0.571	0.020	1.856	0.034	0.789	3.561	4.211	2136.357
59	580	0.009	0.034	2.117	0.592	0.021	1.890	0.034	0.797	3.598	4.059	2158.548
60 61	590 600	0.009 0.009	0.034 0.034	2.151 2.185	0.613 0.634	0.021 0.021	1.924 1.958	0.034 0.034	0.805 0.813	3.634 3.669	3.953 3.880	2180.207 2201.349
62	610	0.009	0.034	2.219	0.655	0.021	1.992	0.034	0.820	3.703	3.833	2221.992
63 64	620 630	0.009 0.009	0.034 0.034	2.253 2.288	0.677 0.699	0.022 0.022	2.026 2.060	0.034 0.034	0.828 0.835	3.737 3.770	3.806 3.793	2242.152 2261.842
65	640	0.009	0.034	2.322	0.720	0.022	2.094	0.034	0.842	3.802	3.792	2281.077
66 67	650 660	0.007	0.027	2.348	0.738	0.017	2.120	0.026	0.660	2.979	3.695	1787.188
67 68	660 670	0.007 0.007	0.027 0.027	2.375 2.402	0.755 0.772	0.017 0.017	2.147 2.173	0.026 0.026	0.664 0.668	2.997 3.016	3.525 3.400	1798.355 1809.326
69	680	0.007	0.027	2.428	0.790	0.017	2,199	0.026	0.672	3.034	3.310	1820.105
70 71	690 700	0.007 0.007	0.027 0.027	2.455 2.481	0.807 0.825	0.018 0.018	2.226 2.252	0.026 0.026	0.676 0.680	3.051 3.069	3.245 3.201	1830.696 1841.103
72	710	0.007	0.027	2.508	0.843	0.018	2.279	0.026	0.684	3.086	3.171	1851.331
73 74	720	0.007	0.027	2.535	0.861	0.018	2.305	0.026	0.687	3.102	3.152	1861.384
74 75	730 740	0.007 0.007	0.027 0.027	2.561 2.588	0.879 0.897	0.018 0.018	2.332 2.358	0.026 0.026	0.691 0.695	3.119 3.135	3.142 3.139	1871.265 1880.979
76	750	0.007	0.027	2.614	0.915	0.018	2.384	0.026	0.698	3.151	3.140	1890.530
77 78	760 770	0.007 0.006	0.027 0.023	2.641 2.664	0.933 0.949	0.018 0.016	2.411 2.434	0.026 0.023	0.702 0.604	3.167 2.726	3.144 3.097	1899.920 1635.859
78 79	780	0.006	0.023	2.687	0.949	0.016	2.456	0.023	0.606	2.726	3.009	1642.546
80	790	0.006	0.023	2.709	0.981	0.016	2.479	0.023	0.609	2.749	2.945	1649.139
81 82	800 810	0.006 0.006	0.023 0.023	2.732 2.755	0.997 1.013	0.016 0.016	2.502 2.524	0.023 0.023	0.611 0.614	2.759 2.770	2.899 2.867	1655.640 1662.049
83	820	0.006	0.023	2.778	1.029	0.016	2.547	0.023	0.616	2.781	2.845	1668.369
84 85	830 840	0.006	0.023	2.801	1.045	0.016	2.570	0.023	0.618	2,791	2.831	1674 <u>.</u> 601
85 86	840 850	0.006 0.006	0.023 0.023	2.823 2.846	1.061 1.077	0.016 0.016	2.592 2.615	0.023 0.023	0.621 0.623	2.801 2.811	2.822 2.818	1680.746 1686.808
87	860	0.006	0.023	2.869	1.094	0.016	2.638	0.023	0.625	2.821	2.818	1692.786
88 89	870 880	0.006 0.006	0.023 0.023	2.892 2.915	1.110 1.126	0.016 0.016	2.661 2.683	0.023	0.627 0.629	2.831 2.841	2.820 2.824	1698.682 1704.499
89 90	890	0.005	0.023	2.915	1.120	0.018	2.003	0.023	0.526	2.041	2.024	1424.802
91	900	0.005	0.019	2.953	1.154	0.014	2.721	0.019	0.528	2.381	2.677	1428.742
92 93	910 920	0.005 0.005	0.019 0.019	2.972 2.991	1.168 1.182	0.014 0.014	2.740 2.759	0.019 0.019	0.529 0.530	2.388 2.394	2.607 2.555	1432.638 1436.491

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
					Pervior	us Area	Imperv	ous Area				
	Time		Rainfall	Accumul.	Accumul.	Incre.	Accumul.	Incre.	Total Runoff	Instant Flowrate		
Time Incr.	(min)	n)	(in)	Rainfall (in)	Runoff (in)	Runoff (in)	Runoff (in)	Runoff (in)	(in)	(cfs)	Design Flowrate (cfs)	Instant Vol. (ft ³)
94	930	0.005	0.019	3.010	1.195	0.014	2.778	0.019	0.532	2.401	2.517	1440.300
95	940	0.005	0.019	3.029	1.209	0.014	2,797	0.019	0.533	2.407	2.490	1444.06
96 97	950	0.005 0.005	0.019	3.048	1.223	0.014	2.816 2.835	0.019 0.019	0.535 0.536	2.413	2.470	1447.79
97 98	960 970	0.005	0.019 0.019	3.067 3.086	1.237 1.251	0.014 0.014	2.835	0.019	0.536	2.419 2.425	2.457 2.449	1451.47 1455.12
90	970	0.005	0.019	3.105	1.251	0.014	2.872	0.019	0.537	2.425	2.449	1455.12
100	990	0.005	0.019	3.103	1.280	0.014	2.891	0.019	0.540	2.431	2,444	1462.29
100	1000	0.005	0.019	3.143	1.294	0.014	2.910	0.019	0.541	2.443	2.441	1465.82
102	1010	0.004	0.015	3.158	1.305	0.011	2.925	0.015	0.434	1.959	2.383	1175.17
103	1020	0.004	0.016	3.174	1.317	0.012	2.941	0.016	0.456	2.061	2.293	1236.31
104	1030	0.004	0.016	3.190	1.329	0.012	2.957	0.016	0.457	2.065	2.238	1238.73
105	1040	0.004	0.016	3.206	1.341	0.012	2.973	0.016	0.458	2.069	2,197	1241.12
106	1050	0.004	0.016	3.222	1.353	0.012	2.989	0.016	0.459	2.073	2.166	1243.50
107	1060	0.004	0.016	3.238	1.365	0.012	3.005	0.016	0.460	2.076	2.144	1245.85
108	1070	0.004	0.016	3.254	1.377	0.012	3.021	0.016	0.461	2.080	2.128	1248.19
109	1080	0.004	0.016	3.270	1.389	0.012	3.037	0.016	0.462	2.084	2.117	1250.50
110	1090	0.004	0.016	3.285	1.401	0.012	3.053	0.016	0.463	2.088	2.110	1252.79
111	1100	0.004	0.016	3.301	1.413	0.012	3.069	0.016	0.463	2.092	2.105	1255.07
112	1110	0.004	0.016	3.317	1.426	0.012	3.084	0.016	0.464	2.096	2.102	1257.32
113	1120 1130	0.004 0.004	0.016 0.016	3.333 3.349	1.438 1.450	0.012 0.012	3.100	0.016 0.016	0.465 0.466	2.099 2.103	2.101 2.101	1259.55 1261.76
114 115	1140	0.004	0.016	3.365	1.450	0.012	3.116 3.132	0.016	0.466	2.103	2.101	1261.76
115	1140	0.004	0.016	3.381	1.402	0.012	3.132	0.016	0.467	2.107	2.102	1265.90
117	1160	0.004	0.016	3.397	1.487	0.012	3.164	0.016	0.468	2.110	2.104	1268.29
118	1170	0.004	0.016	3.413	1.499	0.012	3.180	0.016	0.469	2.117	2.108	1270.42
119	1180	0.004	0.016	3.429	1.511	0.012	3.196	0.016	0.470	2.121	2.111	1272.54
120	1190	0.004	0.016	3.445	1.523	0.012	3.212	0.016	0.471	2.124	2.114	1274.64
121	1200	0.004	0.016	3.461	1.536	0.012	3.228	0.016	0.471	2.128	2.117	1276.72
122	1210	0.004	0.016	3.477	1.548	0.012	3.244	0.016	0.472	2.131	2.120	1278.79
123	1220	0.004	0.016	3.493	1.561	0.012	3.259	0.016	0.473	2.135	2.123	1280.84
124	1230	0.004	0.016	3.509	1.573	0.012	3.275	0.016	0.474	2.138	2.126	1282.87
125	1240	0.004	0.016	3.525	1.585	0.012	3.291	0.016	0.474	2.141	2.129	1284.88
126	1250	0.004	0.016	3.541	1.598	0.012	3.307	0.016	0.475	2.145	2.133	1286.87
127	1260	0.004	0.016	3.557	1.610	0.012	3.323	0.016	0.476	2.148	2.136	1288.85
128	1270	0.004	0.016	3.573	1.623	0.012	3.339	0.016	0.477	2.151	2.139	1290.81
129 130	1280 1290	0.004 0.004	0.016 0.016	3.589 3.605	1.635 1.648	0.012 0.013	3.355 3.371	0.016 0.016	0.477 0.478	2.155 2.158	2.143 2.146	1292.76 1294.69
130	1290	0.004	0.016	3.605	1.660	0.013	3.387	0.016	0.478	2.156	2.146	1294.69
132	1310	0.004	0.016	3.637	1.673	0.013	3.403	0.016	0.479	2.164	2.149	1298.50
132	1320	0.004	0.010	3.653	1.685	0.013	3.403	0.010	0.479	2.167	2.152	1300.38
134	1330	0.004	0.016	3.669	1.698	0.013	3.434	0.016	0.481	2.170	2.159	1302.25
135	1340	0.004	0.016	3.684	1.711	0.013	3,450	0.016	0.482	2.174	2.162	1304.10
136	1350	0.004	0.016	3.700	1.723	0.013	3.466	0.016	0.482	2.177	2.165	1305.93
137	1360	0.004	0.016	3.716	1.736	0.013	3.482	0.016	0.483	2.180	2.168	1307.75
138	1370	0.004	0.016	3.732	1.749	0.013	3.498	0.016	0.484	2.183	2.171	1309.56
139	1380	0.004	0.016	3.748	1.761	0.013	3.514	0.016	0.484	2.186	2.174	1311.35
140	1390	0.004	0.016	3.764	1.774	0.013	3.530	0.016	0.485	2.189	2.177	1313.12
141	1400	0.004	0.016	3.780	1.787	0.013	3.546	0.016	0.485	2.191	2.180	1314.89
142	1410	0.004	0.016	3.796	1.799	0.013	3.562	0.016	0.486	2.194	2.183	1316.63
143	1420	0.004	0.016	3.812	1.812	0.013	3.578	0.016	0.487	2.197	2.186	1318.37
144	1430	0.004	0.016	3.828	1.825	0.013	3.594	0.016	0.487	2.200	2.189	1320.09
145	1440	0.004	0.016	3.844	1.838	0.013	3.610	0.016	0.488	2.203	2,192	1321.79
		1.0							71,457		7,667	193528.2

Tota

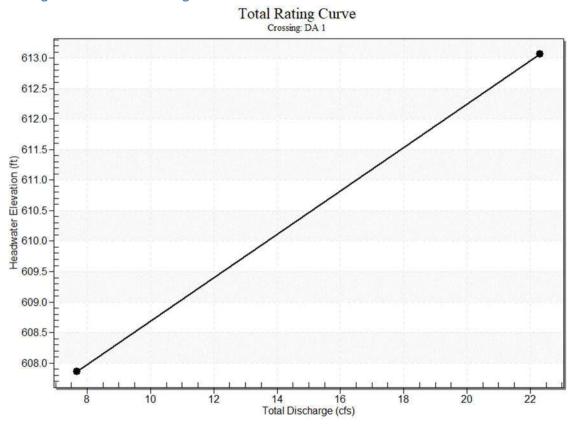
Bull Run Pipelines: Drainage Area 1 (DA1)

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 7.67 cfs


Design Flow: 7.67 cfs

Maximum Flow: 7.67 cfs

Table 1 - Summary of Culvert Flows at Crossing: DA 1

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert 1 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
607.86	7.67	7.67	0.00	1
607.86	7.67	7.67	0.00	1
607.86	7.67	7.67	0.00	1
607.86	7.67	7.67	0.00	1
607.86	7.67	7.67	0.00	1
607.86	7.67	7.67	0.00	1
607.86	7.67	7.67	0.00	1
607.86	7.67	7.67	0.00	1
607.86	7.67	7.67	0.00	1
607.86	7.67	7.67	0.00	1
607.86	7.67	7.67	0.00	1
613.00	21.27	21.27	0.00	Overtopping

Rating Curve Plot for Crossing: DA 1

Culvert Data: Culvert 1

Total Disch arge (cfs)	Culve rt Disch arge (cfs)	Head water Elevat ion (ft)	Inle t Con trol Dep th (ft)	Outl et Con trol Dep th (ft)	Fl ow Ty pe	Nor mal Dep th (ft)	Crit ical Dep th (ft)	Out let De pth (ft)	Tailw ater Dept h (ft)	Outl et Velo city (ft/s)	Tailw ater Veloc ity (ft/s)
7.67 cfs	7.67 cfs	607.86	1.73	0.0*	5- S2 n	0.60	1.07	0.6 5	0.35	10.4 2	4.97
7.67 cfs	7.67 cfs	607.86	1.73	0.0*	5- S2 n	0.60	1.07	0.6 5	0.35	10.4 2	4.97
7.67 cfs	7.67 cfs	607.86	1.73	0.0*	5- S2 n	0.60	1.07	0.6 5	0.35	10.4 2	4.97
7.67 cfs	7.67 cfs	607.86	1.73	0.0*	5- S2 n	0.60	1.07	0.6 5	0.35	10.4 2	4.97

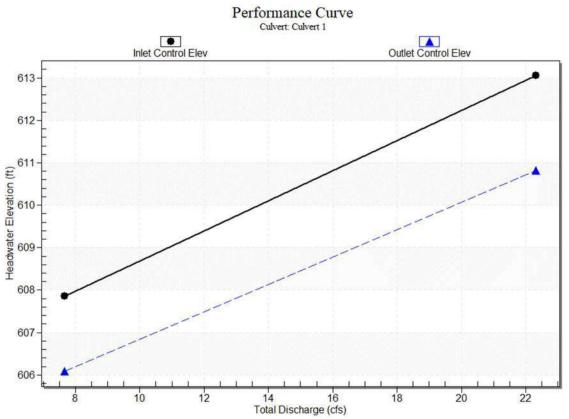
Table: Culvert 1 Table 2

7.67 cfs	7.67 cfs	607.86	1.73	0.0*	5- S2 n	0.60	1.07	0.6 5	0.35	10.4 2	4.97
7.67 cfs	7.67 cfs	607.86	1.73	0.0*	5- S2 n	0.60	1.07	0.6 5	0.35	10.4 2	4.97
7.67 cfs	7.67 cfs	607.86	1.73	0.0*	5- S2 n	0.60	1.07	0.6 5	0.35	10.4 2	4.97
7.67 cfs	7.67 cfs	607.86	1.73	0.0*	5- S2 n	0.60	1.07	0.6 5	0.35	10.4 2	4.97
7.67 cfs	7.67 cfs	607.86	1.73	0.0*	5- S2 n	0.60	1.07	0.6 5	0.35	10.4 2	4.97
7.67 cfs	7.67 cfs	607.86	1.73	0.0*	5- S2 n	0.60	1.07	0.6 5	0.35	10.4 2	4.97
7.67 cfs	7.67 cfs	607.86	1.73	0.0*	5- S2 n	0.60	1.07	0.6 5	0.35	10.4 2	4.97

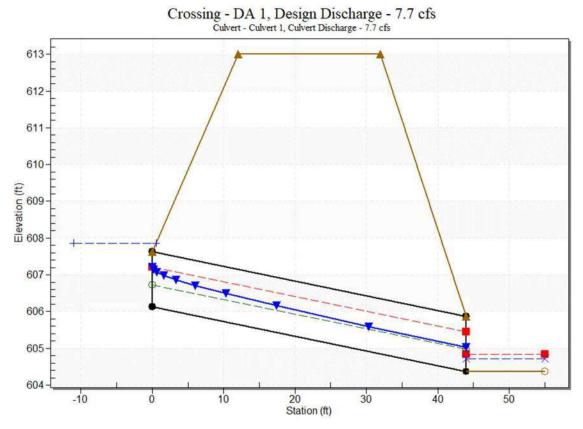
* Full Flow Headwater elevation is below inlet invert.

Culvert Barrel Data

Culvert Barrel Type Straight Culvert


Inlet Elevation (invert): 606.13 ft,

Outlet Elevation (invert): 604.37 ft


Culvert Length: 44.04 ft,

Culvert Slope: 0.0400

Culvert Performance Curve Plot: Culvert 1

Water Surface Profile Plot for Culvert: Culvert 1

Site Data - Culvert 1

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 606.13 ft

Outlet Station: 44.00 ft

Outlet Elevation: 604.37 ft

Number of Barrels: 1

Culvert Data Summary - Culvert 1

Barrel Shape: Circular

Barrel Diameter: 1.50 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Inlet Depression: None

Tailwater Data for Crossing: DA 1

Table 3 - Downstream Channel Rating Curve (Crossing: DA 1)

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
7.67	604.72	0.35	4.97	1.31	1.70
7.67	604.72	0.35	4.97	1.31	1.70
7.67	604.72	0.35	4.97	1.31	1.70
7.67	604.72	0.35	4.97	1.31	1.70
7.67	604.72	0.35	4.97	1.31	1.70
7.67	604.72	0.35	4.97	1.31	1.70
7.67	604.72	0.35	4.97	1.31	1.70
7.67	604.72	0.35	4.97	1.31	1.70
7.67	604.72	0.35	4.97	1.31	1.70
7.67	604.72	0.35	4.97	1.31	1.70
7.67	604.72	0.35	4.97	1.31	1.70

Tailwater Channel Data - DA 1

Tailwater Channel Option: Trapezoidal Channel

Bottom Width: 3.00 ft

Side Slope (H:V): 4.00 (_:1)

Channel Slope: 0.0600

Channel Manning's n: 0.0300

Channel Invert Elevation: 604.37 ft

Roadway Data for Crossing: DA 1

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 20.00 ft

Crest Elevation: 613.00 ft

Roadway Surface: Paved

Roadway Top Width: 20.00 ft

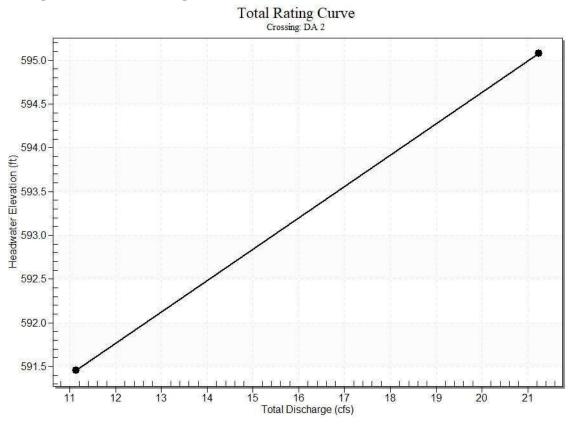
Bull Run Pipelines: Drainage Area 2 (DA2)

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 11.13 cfs


Design Flow: 11.13 cfs

Maximum Flow: 11.13 cfs

Table 1 - Summary of Culvert Flows at Crossing: DA 2

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert 1 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
591.46	11.13	11.13	0.00	1
591.46	11.13	11.13	0.00	1
591.46	11.13	11.13	0.00	1
591.46	11.13	11.13	0.00	1
591.46	11.13	11.13	0.00	1
591.46	11.13	11.13	0.00	1
591.46	11.13	11.13	0.00	1
591.46	11.13	11.13	0.00	1
591.46	11.13	11.13	0.00	1
591.46	11.13	11.13	0.00	1
591.46	11.13	11.13	0.00	1
595.00	19.86	19.86	0.00	Overtopping

Rating Curve Plot for Crossing: DA 2

Culvert Data: Culvert 1

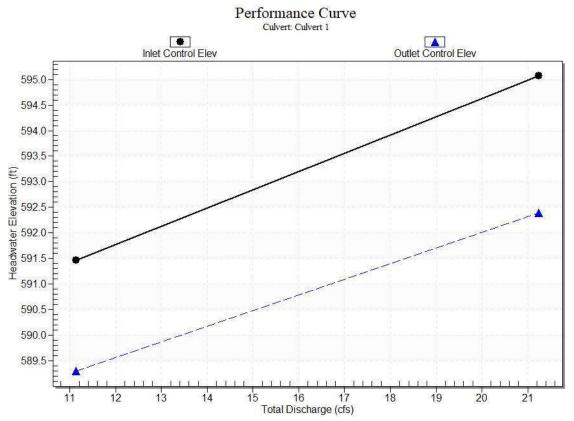
Table 2	- Culvert	Summary	Table: C	ulvert 1	-						
Total Disch arge (cfs)	Culve rt Disch arge (cfs)	Head water Elevat ion (ft)	Inle t Cont rol Dep th (ft)	Outl et Cont rol Dep th (ft)	Fl ow Ty pe	Nor mal Dep th (ft)	Criti cal Dep th (ft)	Out let De pth (ft)	Tailw ater Dept h (ft)	Outl et Velo city (ft/s)	Tailw ater Veloc ity (ft/s)
11.13 cfs	11.13 cfs	591.46	2.53	0.36 1	5- S2 n	0.68	1.28	0.7 5	0.28	12.5 0	9.76
11.13 cfs	11.13 cfs	591.46	2.53	0.36 1	5- S2 n	0.68	1.28	0.7 5	0.28	12.5 0	9.76
11.13 cfs	11.13 cfs	591.46	2.53	0.36 1	5- S2 n	0.68	1.28	0.7 5	0.28	12.5 0	9.76
11.13 cfs	11.13 cfs	591.46	2.53	0.36 1	5- S2 n	0.68	1.28	0.7 5	0.28	12.5 0	9.76

Table 2 - Culvert Summary	Table: Culvert
---------------------------	-----------------------

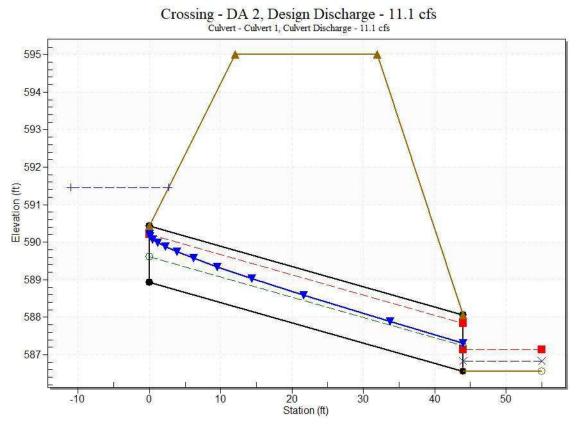
11.13 cfs	11.13 cfs	591.46	2.53	0.36 1	5- S2 n	0.68	1.28	0.7 5	0.28	12.5 0	9.76
11.13 cfs	11.13 cfs	591.46	2.53	0.36 1	5- S2 n	0.68	1.28	0.7 5	0.28	12.5 0	9.76
11.13 cfs	11.13 cfs	591.46	2.53	0.36 1	5- S2 n	0.68	1.28	0.7 5	0.28	12.5 0	9.76
11.13 cfs	11.13 cfs	591.46	2.53	0.36 1	5- S2 n	0.68	1.28	0.7 5	0.28	12.5 0	9.76
11.13 cfs	11.13 cfs	591.46	2.53	0.36 1	5- S2 n	0.68	1.28	0.7 5	0.28	12.5 0	9.76
11.13 cfs	11.13 cfs	591.46	2.53	0.36 1	5- S2 n	0.68	1.28	0.7 5	0.28	12.5 0	9.76
11.13 cfs	11.13 cfs	591.46	2.53	0.36 1	5- S2 n	0.68	1.28	0.7 5	0.28	12.5 0	9.76

Culvert Barrel Data

Culvert Barrel Type Straight Culvert


Inlet Elevation (invert): 588.93 ft,

Outlet Elevation (invert): 586.56 ft


Culvert Length: 44.06 ft,

Culvert Slope: 0.0539

Culvert Performance Curve Plot: Culvert 1

Water Surface Profile Plot for Culvert: Culvert 1

Site Data - Culvert 1

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 588.93 ft

Outlet Station: 44.00 ft

Outlet Elevation: 586.56 ft

Number of Barrels: 1

Culvert Data Summary - Culvert 1

Barrel Shape: Circular

Barrel Diameter: 1.50 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall (Ke=0.5)

Inlet Depression: None

Tailwater Data for Crossing: DA 2

Table 3 - Downstream Channel Rating Curve (Crossing: DA 2)

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
11.13	586.84	0.28	9.76	5.19	3.68
11.13	586.84	0.28	9.76	5.19	3.68
11.13	586.84	0.28	9.76	5.19	3.68
11.13	586.84	0.28	9.76	5.19	3.68
11.13	586.84	0.28	9.76	5.19	3.68
11.13	586.84	0.28	9.76	5.19	3.68
11.13	586.84	0.28	9.76	5.19	3.68
11.13	586.84	0.28	9.76	5.19	3.68
11.13	586.84	0.28	9.76	5.19	3.68
11.13	586.84	0.28	9.76	5.19	3.68
11.13	586.84	0.28	9.76	5.19	3.68

Tailwater Channel Data - DA 2

Tailwater Channel Option: Trapezoidal Channel

Bottom Width: 3.00 ft

Side Slope (H:V): 4.00 (_:1)

Channel Slope: 0.3000

Channel Manning's n: 0.0300

Channel Invert Elevation: 586.56 ft

Roadway Data for Crossing: DA 2

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 20.00 ft

Crest Elevation: 595.00 ft

Roadway Surface: Paved

Roadway Top Width: 20.00 ft

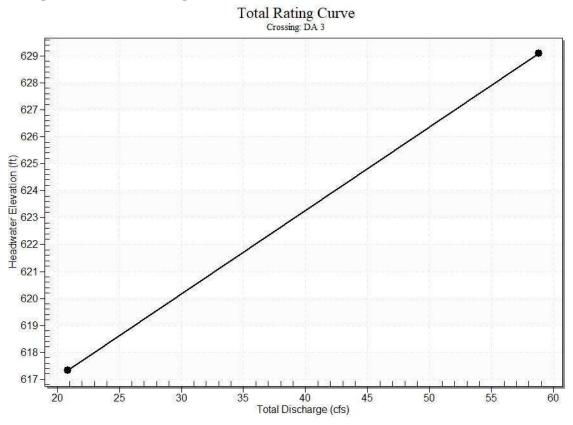
Bull Run Pipelines: Drainage Area 3 (DA3)

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 20.86 cfs


Design Flow: 20.86 cfs

Maximum Flow: 20.86 cfs

Table 1 - Summary of Culvert Flows at Crossing: DA 3

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert 1 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
617.34	20.86	20.86	0.00	1
617.34	20.86	20.86	0.00	1
617.34	20.86	20.86	0.00	1
617.34	20.86	20.86	0.00	1
617.34	20.86	20.86	0.00	1
617.34	20.86	20.86	0.00	1
617.34	20.86	20.86	0.00	1
617.34	20.86	20.86	0.00	1
617.34	20.86	20.86	0.00	1
617.34	20.86	20.86	0.00	1
617.34	20.86	20.86	0.00	1
629.00	56.52	56.52	0.00	Overtopping

Rating Curve Plot for Crossing: DA 3

Culvert Data: Culvert 1

Table 2	- Culvert	Summary	Table: C	ulvert 1							
Total Disch arge (cfs)	Culve rt Disch arge (cfs)	Head water Elevat ion (ft)	Inle t Cont rol Dep th (ft)	Outl et Cont rol Dep th (ft)	Fl ow Ty pe	Nor mal Dep th (ft)	Criti cal Dep th (ft)	Out let De pth (ft)	Tailw ater Dept h (ft)	Outl et Velo city (ft/s)	Tailw ater Veloc ity (ft/s)
20.86 cfs	20.86 cfs	617.34	3.06	1.12 8	5- S2 n	1.03	1.64	1.0 8	0.36	11.9 9	13.03
20,86 cfs	20.86 cfs	617.34	3.06	1.12 8	5- S2 n	1.03	1.64	1.0 8	0.36	11.9 9	13.03
20.86 cfs	20.86 cfs	617.34	3.06	1.12 8	5- S2 n	1.03	1.64	1.0 8	0.36	11.9 9	13.03
20.86 cfs	20.86 cfs	617.34	3.06	1.12 8	5- S2 n	1.03	1.64	1.0 8	0.36	11.9 9	13.03

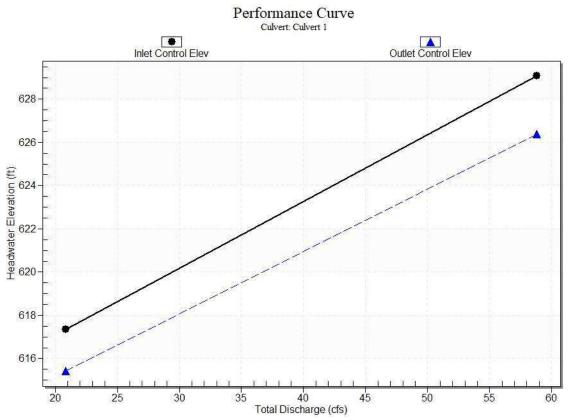
Table 2 - C	Culvert Summary	Table:	Culvert
-------------	------------------------	--------	---------

Bull Run Pipelines: Drainage Area 3 (DA3) - 2

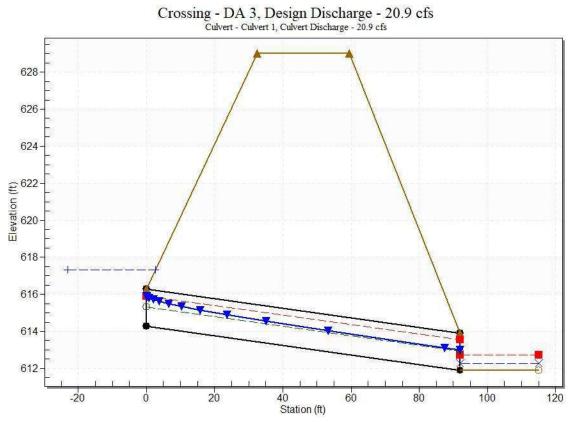
20.86 cfs	20.86 cfs	617.34	3.06	1.12 8	5- S2 n	1.03	1.64	1.0 8	0.36	11.9 9	13.03
20.86 cfs	20.86 cfs	617.34	3.06	1.12 8	5- S2 n	1.03	1.64	1.0 8	0.36	11.9 9	13.03
20.86 cfs	20.86 cfs	617.34	3.06	1.12 8	5- S2 n	1.03	1.64	1.0 8	0.36	11.9 9	13.03
20.86 cfs	20.86 cfs	617.34	3.06	1.12 8	5- S2 n	1.03	1.64	1.0 8	0.36	11.9 9	13.03
20.86 cfs	20.86 cfs	617.34	3.06	1.12 8	5- S2 n	1.03	1.64	1.0 8	0.36	11.9 9	13.03
20.86 cfs	20.86 cfs	617.34	3.06	1.12 8	5- S2 n	1.03	1.64	1.0 8	0.36	11.9 9	13.03
20.86 cfs	20.86 cfs	617.34	3.06	1.12 8	5- S2 n	1.03	1.64	1.0 8	0.36	11.9 9	13.03

Culvert Barrel Data

Culvert Barrel Type Straight Culvert


Inlet Elevation (invert): 614.28 ft,

Outlet Elevation (invert): 611.90 ft


Culvert Length: 92.03 ft,

Culvert Slope: 0.0259

Culvert Performance Curve Plot: Culvert 1

Site Data - Culvert 1

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 614.28 ft

Outlet Station: 92.00 ft

Outlet Elevation: 611.90 ft

Number of Barrels: 1

Culvert Data Summary - Culvert 1

Barrel Shape: Circular

Barrel Diameter: 2.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Inlet Depression: None

Tailwater Data for Crossing: DA 3

Table 3 - Downstream Channel Rating Curve (Crossing: DA 3)

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
20.86	612.26	0.36	13.03	9.00	4.40
20.86	612.26	0.36	13.03	9.00	4.40
20.86	612.26	0.36	13.03	9.00	4.40
20.86	612.26	0.36	13.03	9.00	4.40
20.86	612.26	0.36	13.03	9.00	4.40
20.86	612.26	0.36	13.03	9.00	4.40
20.86	612.26	0.36	13.03	9.00	4.40
20.86	612.26	0.36	13.03	9.00	4.40
20.86	612.26	0.36	13.03	9.00	4.40
20.86	612.26	0.36	13.03	9.00	4.40
20.86	612.26	0.36	13.03	9.00	4.40

Tailwater Channel Data - DA 3

Tailwater Channel Option: Trapezoidal Channel

Bottom Width: 3.00 ft

Side Slope (H:V): 4.00 (_:1)

Channel Slope: 0.4000

Channel Manning's n: 0.0300

Channel Invert Elevation: 611.90 ft

Roadway Data for Crossing: DA 3

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 27.00 ft

Crest Elevation: 629.00 ft

Roadway Surface: Paved

Roadway Top Width: 27.00 ft

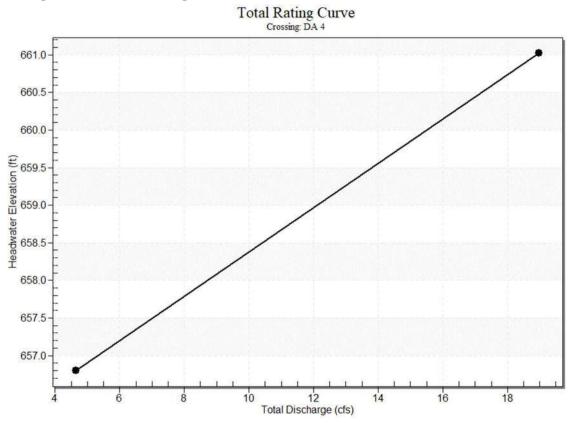
Bull Run Pipelines: Drainage Area 4 (DA4)

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 4.64 cfs


Design Flow: 4.64 cfs

Maximum Flow: 4.64 cfs

Table 1 - Summary of Culvert Flows at Crossing: DA 4

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert 1 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
656.80	4.64	4.64	0.00	1
656.80	4.64	4.64	0.00	1
656.80	4.64	4.64	0.00	1
656.80	4.64	4.64	0.00	1
656.80	4.64	4.64	0.00	1
656.80	4.64	4.64	0.00	1
656.80	4.64	4.64	0.00	1
656.80	4.64	4.64	0.00	1
656.80	4.64	4.64	0.00	1
656.80	4.64	4.64	0.00	1
656.80	4.64	4.64	0.00	1
661.00	18.68	18.68	0.00	Overtopping

Rating Curve Plot for Crossing: DA 4

Culvert Data: Culvert 1

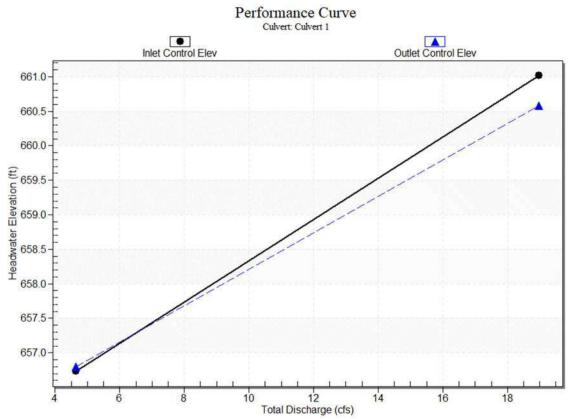
Total Disch arge (cfs)	Culve rt Disch arge (cfs)	Head water Elevat ion (ft)	Inle t Con trol Dep th (ft)	Outl et Con trol Dep th (ft)	Fl ow Ty pe	Nor mal Dep th (ft)	Crit ical Dep th (ft)	Out let De pth (ft)	Tailw ater Dept h (ft)	Outl et Velo city (ft/s)	Tailw ater Veloc ity (ft/s)
4.64 cfs	4.64 cfs	656.80	1.24	1.31 3	2- M2 c	1.03	0.83	0.8 3	0.17	4.64	7.40
4.64 cfs	4.64 cfs	656.80	1.24	1.31 3	2- M2 c	1.03	0.83	0.8 3	0.17	4.64	7.40
4.64 cfs	4.64 cfs	656.80	1.24	1.31 3	2- M2 c	1.03	0.83	0.8 3	0.17	4.64	7.40
4.64 cfs	4.64 cfs	656.80	1.24	1.31 3	2- M2 c	1.03	0.83	0.8 3	0.17	4.64	7.40

Bull Run Pipelines: Drainage Area 4 (DA4) - 2

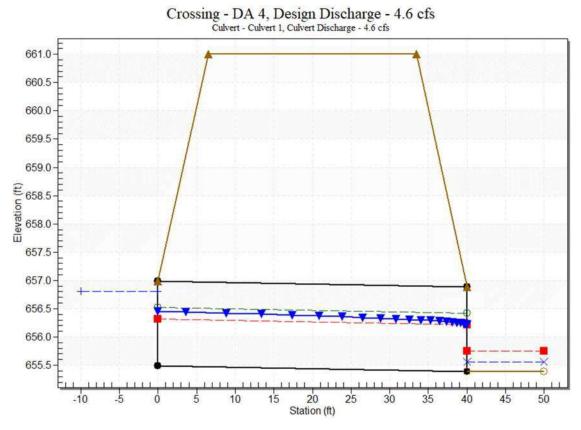
4.64 cfs	4.64 cfs	656.80	1.24	1.31 3	2- M2 c	1.03	0.83	0.8 3	0.17	4.64	7.40
4.64 cfs	4.64 cfs	656.80	1.24	1.31 3	2- M2 c	1.03	0.83	0.8 3	0.17	4.64	7.40
4.64 cfs	4.64 cfs	656.80	1.24	1.31 3	2- M2 c	1.03	0.83	0.8 3	0.17	4.64	7.40
4.64 cfs	4.64 cfs	656.80	1.24	1.31 3	2- M2 c	1.03	0.83	0.8 3	0.17	4.64	7.40
4.64 cfs	4.64 cfs	656.80	1.24	1.31 3	2- M2 c	1.03	0.83	0.8 3	0.17	4.64	7.40
4.64 cfs	4.64 cfs	656.80	1.24	1.31 3	2- M2 c	1.03	0.83	0.8 3	0.17	4.64	7.40
4.64 cfs	4.64 cfs	656.80	1.24	1.31 3	2- M2 c	1.03	0.83	0.8 3	0.17	4.64	7.40

Culvert Barrel Data

Culvert Barrel Type Straight Culvert


Inlet Elevation (invert): 655.49 ft,

Outlet Elevation (invert): 655.39 ft


Culvert Length: 40.00 ft,

Culvert Slope: 0.0025

Culvert Performance Curve Plot: Culvert 1

Water Surface Profile Plot for Culvert: Culvert 1

Site Data - Culvert 1

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 655.49 ft

Outlet Station: 40.00 ft

Outlet Elevation: 655.39 ft

Number of Barrels: 1

Culvert Data Summary - Culvert 1

Barrel Shape: Circular

Barrel Diameter: 1.50 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Inlet Depression: None

Tailwater Data for Crossing: DA 4

Table 3 - Downstream Channel Rating Curve (Crossing: DA 4)

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
4.64	655.56	0.17	7.40	3.19	3.44
4.64	655.56	0.17	7.40	3.19	3.44
4.64	655.56	0.17	7.40	3.19	3.44
4.64	655.56	0.17	7.40	3.19	3.44
4.64	655.56	0.17	7.40	3.19	3.44
4.64	655.56	0.17	7.40	3.19	3.44
4.64	655.56	0.17	7.40	3.19	3.44
4.64	655.56	0.17	7.40	3.19	3.44
4.64	655.56	0.17	7.40	3.19	3.44
4.64	655.56	0.17	7.40	3.19	3.44
4.64	655.56	0.17	7.40	3.19	3.44

Tailwater Channel Data - DA 4

Tailwater Channel Option: Trapezoidal Channel

Bottom Width: 3.00 ft

Side Slope (H:V): 4.00 (_:1)

Channel Slope: 0.3000

Channel Manning's n: 0.0300

Channel Invert Elevation: 655.39 ft

Roadway Data for Crossing: DA 4

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 27.00 ft

Crest Elevation: 661.00 ft

Roadway Surface: Paved

Roadway Top Width: 27.00 ft

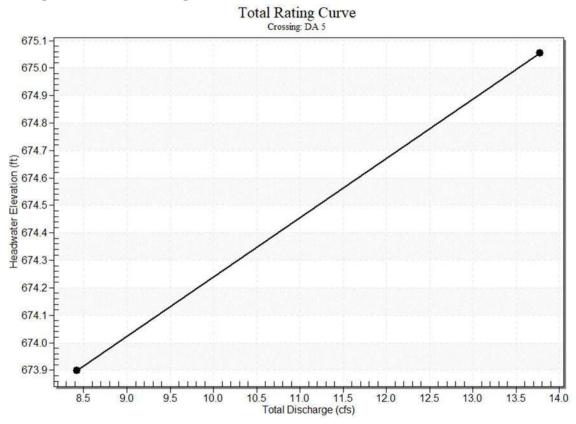
Bull Run Pipelines: Drainage Area 5 (DA5)

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 8.42 cfs


Design Flow: 8.42 cfs

Maximum Flow: 8.42 cfs

Table 1 - Summary of Culvert Flows at Crossing: DA 5

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert 1 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
673.90	8.42	8.42	0.00	1
673.90	8.42	8.42	0.00	1
673.90	8.42	8.42	0.00	1
673.90	8.42	8.42	0.00	1
673.90	8.42	8.42	0.00	1
673.90	8.42	8.42	0.00	1
673.90	8.42	8.42	0.00	1
673.90	8.42	8.42	0.00	1
673.90	8.42	8.42	0.00	1
673.90	8.42	8.42	0.00	1
673.90	8.42	8.42	0.00	1
675.00	12.61	12.61	0.00	Overtopping

Rating Curve Plot for Crossing: DA 5

Culvert Data: Culvert 1

Table 2 - Total Disch arge (cfs)	Culve rt Disch arge (cfs)	Head water Elevat ion (ft)	Inle t Con trol Dep th (ft)	Outl et Con trol Dep th (ft)	Fl ow Ty pe	Nor mal Dep th (ft)	Crit ical Dep th (ft)	Out let De pth (ft)	Tailw ater Dept h (ft)	Outl et Velo city (ft/s)	Tailw ater Veloc ity (ft/s)
8.42 cfs	8.42 cfs	673.90	1.90	0.97 9	5- S2 n	0.81	1.12	0.8 4	0.39	8.30	4.79
8.42 cfs	8.42 cfs	673.90	1.90	0.97 9	5- S2 n	0.81	1.12	0.8 4	0.39	8.30	4.79
8.42 cfs	8.42 cfs	673.90	1.90	0.97 9	5- S2 n	0.81	1.12	0.8 4	0.39	8.30	4.79
8.42 cfs	8.42 cfs	673.90	1.90	0.97 9	5- S2 n	0.81	1.12	0.8 4	0.39	8.30	4.79

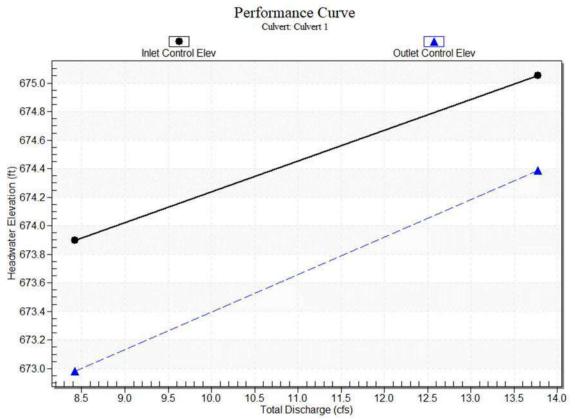
Table 2 - Culvert Su v Table: Culvert 1

Bull Run Pipelines: Drainage Area 5 (DA5) - 2

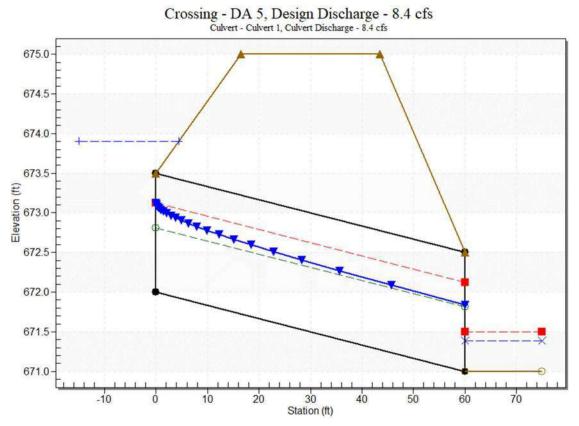
8.42 cfs	8.42 cfs	673.90	1.90	0.97 9	5- S2 n	0.81	1.12	0.8 4	0.39	8.30	4.79
8.42 cfs	8.42 cfs	673.90	1.90	0.97 9	5- S2 n	0.81	1.12	0.8 4	0.39	8.30	4.79
8.42 cfs	8.42 cfs	673.90	1.90	0.97 9	5- S2 n	0.81	1.12	0.8 4	0.39	8.30	4.79
8.42 cfs	8.42 cfs	673.90	1.90	0.97 9	5- S2 n	0.81	1.12	0.8 4	0.39	8.30	4.79
8.42 cfs	8.42 cfs	673.90	1.90	0.97 9	5- S2 n	0.81	1.12	0.8 4	0.39	8.30	4.79
8.42 cfs	8.42 cfs	673.90	1.90	0.97 9	5- S2 n	0.81	1.12	0.8 4	0.39	8.30	4.79
8.42 cfs	8.42 cfs	673.90	1.90	0.97 9	5- S2 n	0.81	1.12	0.8 4	0.39	8.30	4.79

Culvert Barrel Data

Culvert Barrel Type Straight Culvert


Inlet Elevation (invert): 672.00 ft,

Outlet Elevation (invert): 671.00 ft


Culvert Length: 60.01 ft,

Culvert Slope: 0.0167

Culvert Performance Curve Plot: Culvert 1

Site Data - Culvert 1

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 672.00 ft

Outlet Station: 60.00 ft

Outlet Elevation: 671.00 ft

Number of Barrels: 1

Culvert Data Summary - Culvert 1

Barrel Shape: Circular

Barrel Diameter: 1.50 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge with Headwall

Inlet Depression: None

Tailwater Data for Crossing: DA 5

Table 3 - Downstream Channel Rating Curve (Crossing: DA 5)

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
8.42	671.39	0.39	4.79	1.21	1.57
8.42	671.39	0.39	4.79	1.21	1.57
8.42	671.39	0.39	4.79	1.21	1.57
8.42	671.39	0.39	4.79	1.21	1.57
8.42	671.39	0.39	4.79	1.21	1.57
8.42	671.39	0.39	4.79	1.21	1.57
8.42	671.39	0.39	4.79	1.21	1.57
8.42	671.39	0.39	4.79	1.21	1.57
8.42	671.39	0.39	4.79	1.21	1.57
8.42	671.39	0.39	4.79	1.21	1.57
8.42	671.39	0.39	4.79	1.21	1.57

Tailwater Channel Data - DA 5

Tailwater Channel Option: Trapezoidal Channel

Bottom Width: 3.00 ft

Side Slope (H:V): 4.00 (_:1)

Channel Slope: 0.0500

Channel Manning's n: 0.0300

Channel Invert Elevation: 671.00 ft

Roadway Data for Crossing: DA 5

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 27.00 ft

Crest Elevation: 675.00 ft

Roadway Surface: Paved

Roadway Top Width: 27.00 ft

STANDARD O&M PLAN FOR THE SIMPLIFIED APPROACH

Filter Strips

Runoff from impervious surface must en	nter filter strip as sheet flow
MAINTENANCE INDICATOR	CORRECTIVE ACTION
Runoff isn't entering as sheet flow	Remove debris dams or other impediments to sheet flow
Vegetation must cover at least 90% of t	he facility at maturity.
MAINTENANCE INDICATOR	CORRECTIVE ACTION
Dead or stressed vegetation	Replant per planting plan, or substitute from BES plant list (see Section 3.5).
Dry grass or other plants	Irrigate and mulch as needed; trim tall grasses and remove clippings. Maintain grass height at 6"-9".
Tall grass and vegetation	Prune to allow sight lines.
Weeds	Manually remove weeds.
Growing medium must sustain healthy	olant cover.
MAINTENANCE INDICATOR	CORRECTIVE ACTION
Gullies, erosion, or exposed soils	Fill in and lightly compact areas of erosion and replant according to planting plan or substitute from BES plant list (see SWMM Section 3.8). Erosion deeper than 2 inches must be addressed.
Slope slippage	Stabilize slopes with plantings from the plant list in SWMM Section 3.8.

Annual Maintenance Schedule

Summer	Remove any build-up of weeds or organic debris.
Fall	Replant exposed soil and replace dead plants. Remove sediment and plant debris.
Spring	Remove sediment and plant debris. Replant exposed soil and replace dead plants.
All seasons	Weed as necessary.

- Maintenance Records: All facility operators are required to keep an inspection and maintenance log. Record date, description, and contractor (if applicable) for all repairs, landscape maintenance, and facility cleanout activities. Keep work orders and invoices on file and make available upon request of the City inspector.
- **Fertilizers:** Their use is strongly discouraged because of the potential for negative environmental impacts. Never apply fertilizer before testing the fertility of the growing medium to determine whether fertilizer is needed and appropriate application rates. Use only organic, slow-release fertilizers. See SWMM Section 3.2.2.1 for more information.

Pesticides/Herbicides: Their use is prohibited.

- **Pollution Prevention:** All sites must implement Best Management Practices to prevent the introduction of pollutants to stormwater and/or facility discharge points. In the event of a spill, call 503-823-7180 to report it immediately and document the circumstances and the corrective action taken; include the date/time, weather and site conditions. Never wash spills into a stormwater facility.
- Vectors (Mosquitoes and Rats): Stormwater facilities must not harbor mosquito larvae or rodents that pose a threat to public health or that undermine the facility structure. Record the time/date, weather, and site conditions when vector activity observed. Record when vector abatement started and ended.

Access: Maintain ingress/egress per design standards, maintaining access to the entirety of the facility for inspection & maintenance.

Operations and Maintenance Log

Date	Work Performed By	Type of Work Performed			Performed	Notes	Initials
		Sediment and Trash Removal	Plant Replacement type, location	Structural Repairs – type, location	Other		

Land Use Planning Division 1600 SE 190th Ave. Portland OR 97233 Phone: 503-988-3043 land.use.planning@multco.us https://multco.us/landuse/

STORMWATER DRAINAGE CONTROL CERTIFICATE >500 SQUARE FEET OF NEW / REPLACED IMPERVIOUS SURFACES

NOTE TO PROPERTY OWNER/APPLICANT: Please have an Oregon Licensed Professional Engineer fill out this Certificate and attach a signed site plan, stamped and signed storm water system details, and stamped and signed storm water calculations used to support the conclusion. Please note that replacement of existing structures does not provide a credit to the square footage threshold.

Duan autor Adduces on Legal Decenintian.	SE Lusted Road	I, SE Dodge Park Blvd	, SE Altman Rd,
Property Address or Legal Description:	and SE Cottrell,	Gresham	

Description of Project: Bull Run Filtration - Filtration Pipelines

The following stormwater drainage control system will be required:

Use of Gutter, downspout, and splash block drainage control system;

Natural Infiltration Process; or

X Construction of an on-site storm water drainage control system.

The rate of stormwater runoff attributed to the new/replaced development for a 10-year/24-hour storm event will be no greater than that which existed prior to any development as measured from the property line or from the point of discharge into a water body with the use of the designated system [MCC 39.6235].

I certify the attached signed site plan <u>showing the areas needed for the chosen system type</u>, stamped and signed <u>storm water system design details</u>, and stamped and signed <u>calculations</u> dated <u>9/23/2022</u> will meet the requirements listed above.

Signature:	Engineer's Stamp Below:
Print Name: Patrick Tortora	STERED PROFESS
Business Name: Emerio Design, LLC	24 4 50400PE P 7
Address:6445 SW Fallbrook PI., Beaverton, OR 97008	OREGON T
Phone #:503.746.8812	PICA DE 1993 0
Date: <u>9/23/2022</u>	EXPIRES: 6-30-2024

NOTE TO ENGINEER: Please check one box above. Multnomah County does not use the City of Portland's storm water ordinance. As part of your review, MCC 39.6235 requires that you must consider all new, replaced, and existing structures and impervious areas and determine that the newly generated stormwater from the new or replaced impervious surfaces is in compliance with Multnomah County Code for a 10-year/24-hour storm event. This Storm Water Drainage Control Certificate does not apply to shingle or roof replacement on lawfully established structures.

§ 39.6235 STORMWATER DRAINAGE CONTROL.

(A) Persons creating new or replacing existing impervious surfaces exceeding 500 square feet shall install a stormwater drainage system as provided in this section. This subsection (A) does not apply to shingle or roof replacement on lawful structures.

(B) The provisions of this section are in addition to and not in lieu of any other provision of the code regulating stormwater or its drainage and other impacts and effects, including but not limited to regulation thereof in the SEC overlay.

(C) The provisions of this section are in addition to and not in lieu of stormwater and drainage requirements in the Multnomah County Road Rules and Design and Construction Manual, including those requirements relating to impervious surfaces and proposals to discharge stormwater onto a county right-of-way.

(D) The stormwater drainage system required in subsection (A) shall be designed to ensure that the rate of runoff for the 10-year 24-hour storm event is no greater than that which existed prior to development at the property line or point of discharge into a water body.

(E) At a minimum, to establish satisfaction of the standards in this section and all other applicable stormwater-related regulations in this code, the following information must be provided to the planning director:

(1) A site plan drawn to scale, showing the property line locations, ground topography (contours), boundaries of all ground disturbing activities, roads and driveways, existing and proposed structures and buildings, existing and proposed sanitary tank and drainfields (primary and reserve), location of stormwater disposal, trees and vegetation proposed for both removal and planting and an outline of wooded areas, water bodies and existing drywells;

(2) Documentation establishing approval of any new stormwater surcharges to a sanitary drainfield by the City of Portland Sanitarian and/or any other agency authorized to review waste disposal systems;

(3) Certified statement, and supporting information and documentation, by an Oregon licensed Professional Engineer that the proposed or existing stormwater drainage system satisfies all standards set forth in this section and all other stormwater drainage system standards in this code; and

(4) Any other report, information, plan, certification or documentation necessary to establish satisfaction of all standards set forth in this section and all other applicable stormwater-related regulations in this code, such as, but not limited to, analyses and explanations of soil characteristics, engineering solutions, and proposed stream and upland environmental protection measures.