Sandbag Construction

The use of sandbags is a simple, but effective way to prevent or reduce flood water damage. Properly filled and placed, sandbags can act as a barrier to divert moving water around, instead of through buildings. Sandbag construction does not guarantee a watertight seal but is satisfactory for use in most situations. Sandbags are also used successfully to prevent overtopping of leveed streams; for diverting current flow to specific area, ring boils on levee back slopes or behind levees; to provide weight on back slopes of saturated levees, visquine and straw bales; and to build buttresses on back slopes and/or toe saturated levees.

Untied sandbags are recommended for most situations. Tied sandbags should be used only for special situations or for specific purposes such as filling holes, holding visquine or straw bales in place or to form barriers backed by supportive planks or aluminum sheet piles.

Sandbag filling operations can be accomplished at or near the placement site, at centrally located filling sites, i.e., fire stations, diking district building or at actual sand borrow pits. If the bags are to be prefilled at a distant location, due consideration prefilled at a distant location, due consideration placement site access. In many cases, acces may be only by boat, tractor or helicopter.

The most commonly used bags are treated burlap sacks, approximate size 24 inches by 14 inches. The treatment prevents rodent deterioration while in storage. Unused empty bags can be stockpiled for emergency use and will be serviceable for years if kept dry and properly stored. Filled bags of earth material will deteriorate quickly. Untreated bags or any kind of bags can be used in emergencies.

A sandy soil is most desirable for filling sandbags but any other available material such as silt, clay gravels or a mixture of these may be used. Sand is a pervious material and additional weight is obtained when the soil in the sack gets saturated, and sand filled sacks shape really well Clay materials are difficult to fill bags with and Clay materials are difficult to fill bags with and and are very difficult to Gravels are too pervious and are very difficult to shape. In emergencies, when vence ack side of the levee or adjacent dry field to obtain the sandbag material. Sandbag berms can easily be constructed by two people, as most individuals have the physical capability to carry a sandbag weighing approximately 40 pounds.
Untied bags should be filled approximately $2 / 3$ full. Tied bags can be filled more, but leave enough neck so that it can be tied properly.

Sandbag Measurements
Stacking Sandbags
1 Pallet $=1$ Ton (approx) $=75$ Bags 1 Pallet = 75 Bags
1 Semi-Truck = 1,500 Bags =/or 20 Pallets
1 Semi-Truck = 20 Pallets
1 Tandem Truck of Sand = 10 Cubic Yards 10 Cubic Yards of Sand @ 30\# Bag = 1,200 Bags
12 Cubic Yards of Sand @ 30\# Bag = 1,450 Bags
1 Bag = 30\# (approx)
1 Bag = $1 \frac{1}{2}$ Cubic Feet (approx)
Bags $55-60 \%$ percent filled provide best engineering properties

Estimating Bag Requirements

Bags are required for 100 feet of dike

Height	Bags Required
1 Foot	800
2 Foot	2,000
3 Foot	3,400

3 Foot
Rule of Thumb
Width 3X (times) height.

Sealing the Dike

U.S. Army Corps of Engineers St. Paul District 180 5th ST E STE 700 Saint Paul, MN 55101

Strip sod before laying
bottom layer, if possible BUILDING STRONG

Normally, filling sandbags is a two- or threeperson operation. One member of the team should place the bottom of the empty bag on the ground slightly in front of wide spread feet with arms extended. The throat of the bag is folded outward about 1-1/2 inches to form a collar and held with the hands in a position that will enabl the second team member to empty a rounded No. 2 shovel full of material into the open end. The shoveler should carefully release the shovel full of material into the throat of the bag. Haste in this can result in undue spillage and added work. The third team member stockpiles and/or stacks the $2 / 3$ full open sacks. The use of gloves is necessary so as not to injure hands during the filling operations. The use of safety goggles is desirable, especially during dry and windy days.

For large scale operations, filling sandbag can be expedited by using bag holding racks, funnels on the back of the dump trucks used for sanding operations and various power loading equipment. However, the special equipment required is not always available during an emergency.

Pyramid Placement Method

Remove any debris from the area where bags are to be placed. Place the $2 / 3$ filled bags engthwise and parallel to the direction of flow with the untied open end of the bag facing downstream. Initially fill the low spots before placing bags the full length of the area to be raised. Always keep the slope of the top of the sandbags the same as the adjacent water surface slope Start the downstream he sandbage. Staration, and about one foot he sandbag operation, and about one foot landward from the river's edge at the levee top continuing upstream. Place succeeding bags with the bottom of the bag tightly and partially on the open end of previous bag. Offset adjacent rows or layers by one-half bag length to eliminate continuous joints. To eliminate voids and form a tight seal, compact and shape each bag by walking on it and continue to walk on it as succeeding layers are placed.

PLAN OF BOTTOM LAYER | BAGS REQUIREDPER 100 |
| :---: |
| LINEAR FEETOFLEEEE |

Height Above Levee	Bags Required
1 foot	600*
2 feet	2100
3 feet	4500
4 feet	7800

Pyramid placement is used to increase the height of sandbag protection.

Place the sandbags to form a pyramid by laying equal numbers of rows on the bottom as there are vertical course.

It is very important to compact each bag in place by walking on it, butting the ends of the sacks together, maintaining a staggered joint placement and folding under all loose ends.

Ringing Sand Boils

Corps of Engineers Sandbag Policy
It is the responsibility of local governments and flood control districts to maintain a supply of sandbags adequate to cover anticipated emergencies. The St. Paul District maintains a limited stockpile of sandbags and other flood fighting materials intended to augment the stocks of local jurisdictions during actual flood emergency situations. At the discretion of the District Engineer, a portion of the St. Paul District's stockpile may be loaned to meet a specific local flood emergency situation. Unused stocks must be eturned to the St. Paul District as soon as the emergency conditions are over. Consumed supplies must be replaced in kind or be paid for by local interests, unless the District Engineer has declared a flood emergency in that locality, in which case the bags can be considered expendable without reimbursement.

